

Pressurization, degassing, make-up and heat exchanger systems

Planning, calculation, equipment

Technical planning documentation

Calculation procedures

ł	(K † X)
	← • →
l	يعك

Pressurization systems

Heating and cooling circuits	
Role of pressurization systems	5
Calculation parameters	5
Properties and auxiliary variables	6
Hydraulic integration	7
Special pressurization systems - overview	8
Reflex diaphragm expansion vessels	9
Heating systems	10 - 11
Solar energy systems	12 - 15
Cooling water systems	16 - 17
Reflex pressurization systems with external pressure generation	18 - 22
District heating systems, large-scale and special systems	23
Potable water systems	
Hot water systems	24 - 25
Pressure booster systems	24, 26

Make-up and degassing systems

Water make-up systems	27
Degassing stations	28
Research work	29
Water softening systems	30 - 33

Heat exchanger systems

Heat exchangers	34 - 35
Physical principles	36
System equipment	37

Equipment - accessories - safety technology - inspection

Safety valves	38 - 39
Exhaust lines, expansion traps	40
Pressure limiters	41
Expansion lines, shut-off, draining	42
In-line vessels	43
Safety equipment of water heating systems	44 - 45
Safety equipment of hot water systems	46 - 47
Inspection and maintenance of systems and pressure vessels	48 - 51

General information

Terms, code letters, symbols In-house contacts Field sales contacts reflex

56

54

55

4

Calculation procedures

The aim of this guide is to provide you with the most important information required to plan, calculate and equip Reflex pressurization, degassing and heat exchanger systems. Calculation forms are provided for individual systems. Overviews detail the most important auxiliary variables and properties for calculation as well as relevant requirements for safety equipment.

Please contact us if you require any additional information. Your specialist adviser will be happy to help. Calculation forms

Auxiliary variables

▶ Your specialist adviser $\bigcirc \rightarrow p.55$

Standards, The following standards and guidelines contain basic information on planning, **guidelines** calculation, equipment and operation:

DIN EN 12828	Heating systems in buildings – Planning of hot water heating systems
DIN 4747 T1	District heating systems, safety equipment
DIN 4753 T1	Water heaters and water heating systems
DIN EN 12976/77	Thermal solar systems
VDI 6002	(Draft) Solar heating for domestic water
VDI 2035 Part 1	Prevention of damage through scale formation in domestic hot water and water heating installations
VDI 2035 Part 2	Prevention of damage through water-side corrosion in water heating installations
EN 13831	Closed expansion vessels with built in diaphragm for installation in water
DIN 4807	Expansion vessels
DIN 4807 T1	Terms
DIN 4807 T2	Calculation in conjunction with DIN EN 12828
DIN 4807 T5	Expansion vessels for drinking water installations
DIN 1988	Technical rules for drinking water installations, pressure increase and reduction
DIN EN 1717	Protection against pollution of potable water
DGRL	Pressure Equipment Directive 97/23/EC
BetrSichV	Ordinance on Industrial Safety and Health (as of 01/01/2003)
EnEV	Energy Saving Ordinance

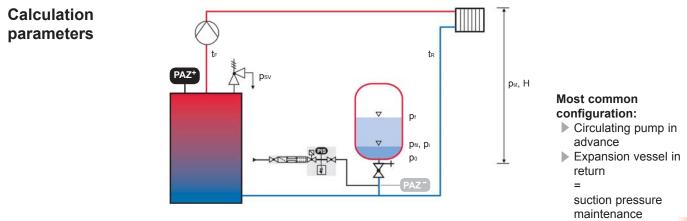
Planning The product-specific information required for calculations can be found in the relevant product documents and, of course, at 'www.reflex.de'.

Systems Not all systems are covered by the standards, nor is this possible. Based on new findings, we therefore also provide you with information for the calculation of special systems, such as solar energy systems, cooling water circuits, and district heating systems.

With the automation of system operation becoming ever more important, pressure monitoring and water make-up systems are thus also discussed, in addition to central deaeration and degassing systems.

Calculation program Computer-based calculations of pressurization systems and heat exchangers can be performed via our **Reflex calculation program**, which is available for use or download at www.reflex.de. Another option is to use our new 'reflex pro app'! Both tools represent a quick and simple means of finding your ideal solution.

Special systems In the case of special systems, such as pressurization stations in district heating systems with an output of more than 14 MW or flow temperature over 105°C, please contact our specialist department directly.


 Special pressure maintenance
 +49 2382 7069-536

Role of pressurization systems

Pressurization systems play a central role in heating and cooling circuits and perform three main tasks:

- 1. They keep the pressure within permissible limits at all points of the system, thus ensuring that the authorized excess operating pressure is maintained while safeguarding a minimum pressure to prevent vacuums, cavitation and evaporation.
- 2. They compensate for volume fluctuations of the heating or cooling water as a result of temperature variations.
- 3. Provision for system-based water losses by means of a water seal.

Careful calculation, commissioning and maintenance are essential to the correct functioning of the overall system.

Definitions in accordance with DIN EN 12828 and following DIN 4807 T1/T2 based on the example of a heating system with a diaphragm expansion vessel.

Pressures are given as overpressures and relate to the expansion vessel connection or the pressure gauge on pressurization stations. The configuration corresponds to the diagram above.

p sv	Safety valve actuation pressur	e		The permissible excess operating	
PAZ+	= PL _{max} Pressure limiter	Closing pressure difference acc. to TRD 721 = Asv	0.2 bar	pressure must not be exceeded at any point within the system.	PL _{max} required in accor- dance with DIN EN 12828 if individual boiler output
pf	Final pressure	Closing differen TRD 7		Pressure in the system at	> 300 kW
<u>pfil</u>	Filling pressure	Setpoint value range for pressure maintenance= normal pressure level	Ve Expansion volume	maximum temperature Pressure in the system at filling temperature Pressure in the system at	 Normal pressure range Pressure maintenance setpoint value between p_i and p_f
₽o	Minimum operating pressure	≥ 0.3 bar	V _{ws} Water seal	minimum temperature	Water seal V _{ws} to cover system-related water losses
PAZ	= Input pressure for expansion vessel = PLmin Minimum pressure limiter Static pressure	≥ 0.2 bar + pe	~ ~	- Vacuum formation - Evaporation - Cavitation	PL _{min} acc. to DIN EN 12828; to ensure p₀ in hot water systems, an automatic
<u>Pst</u>		~		Pressure of liquid column based on static height (H)	water make-up system is recom- mended, along

with an

Properties and auxiliary variables

Properties of water and water mixtures

Pure water without antifreeze additive

t / °C	0	10	20	30	40	50	60	70	80	90	100	105	110	120	130	140	150	160
n / % (+ 10°C of t)		0	0.13	0.37	0.72	1.15	1.66	2.24	2.88	3.58	4.34	4.74	5.15	6.03	6.96	7.96	9.03	10.20
p₀ / bar		-0.99	-0.98	-0.96	-0.93	-0.88	-0.80	-0.69	-0.53	-0.30	0.01	0.21	0.43	0.98	1.70	2.61	3.76	5.18
$\Delta \mathbf{n}$ (t _R)								0	0.64	1.34	2.10	2.50	2.91	3.79				
ρ / kg/m³	1000	1000	998	996	992	988	983	978	972	965	958	955	951	943	935	926	917	907

Water with antifreeze additive* 20% (vol.) Lowest permissible system temperature -10°C

t / °C	0	10	20	30	40	50	60	70	80	90	100	105	110	120	130	140	150	160
n* / % (- 10°C of t)	0.07	0.26	0.54	0.90	1.33	1.83	2.37	2.95	3.57	4.23	4.92		5.64	6.40	7.19	8.02	8.89	9.79
p ₀* / bar						-0.9	-0.8	-0.7	-0.6	-0.4	-0.1		0.33	0.85	1.52	2.38	3.47	4.38
ρ / kg/m³	1039	1037	1035	1031	1026	1022	1016	1010	1004	998	991		985	978	970	963	955	947

Water with antifreeze additive* 34% (vol.) Lowest permissible system temperature - 20°C

t / °C	0	10	20	30	40	50	60	70	80	90	100	105	110	120	130	140	150	160
n* / % (- 20 °C of t)	0.35	0.66	1.04	1.49	1.99						5.68							
p ₀* / bar						-0.9	-0.8	-0.7	-0.6	-0.4	-0.1		0.23	0.70	1.33	2.13	3.15	4.41
ρ / kg/m³	1066	1063	1059	1054	1049	1043	1037	1031	1025	1019	1012		1005	999	992	985	978	970

n - Percentage expansion for water based on a minimum system temperature of +10°C (generally filling water)

n* - Percentage expansion for water with antifreeze additive* based on a minimum system temperature of -10°C or -20°C

Δv - Percentage expansion for water for calculation of temperature layer containers between 70°C and max. return temperature

pe - Evaporation pressure for water relative to atmosphere

pe* - Evaporation pressure for water with antifreeze additive

- Density ρ

- Antifreeze Antifrogen N; when using other antifreeze additives, the relevant properties must be obtained from the manufacturer

Approximate calculation of water content V_s of heating systems

+ pipelines + other $V_s = \dot{Q}_{tot} \times V_s$ $V_s = \dot{Q}_{tot} (v_s - 1.4 I) + pipelines + other$

- \rightarrow for systems with natural circulation boilers
- \rightarrow for systems with heat exchangers
- V_s = \dot{Q}_{tot} (v_s 2.0 l) + pipelines + other
- \rightarrow for systems without heat exchangers
- Installed heating output
 - Vs = + + = liters

▶ Specific water content v_s in liters/kW of heating systems (heat exchangers, distribution, heating surfaces)

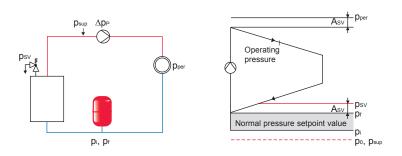
tr/tr	Radi	ators	Plates	Convectors	Ven-	Floor heating
°C	Cast iron	Tube and steel			tilation	
C	radiators	radiators				
60/40	27.4	36.2	14.6	9.1	9.0	
70/50	20.1	26.1	11.4	7.4	8.5	
70/55	19.6	25.2	11.6	7.9	10.1	
80/60	16.0	20.5	9.6	6.5	8.2	Vs = 20 l/kW
90/70	13.5	17.0	8.5	6.0	8.0	$V_{s}^{**} = 20 \text{ I/kW} \frac{n_{\text{FH}}}{n}$
105/70	11.2	14.2	6.9	4.7	5.7	^v <i>20 m</i> n
110/70	10.6	13.5	6.6	4.5	5.4	
100/60	12.4	15.9	7.4	4.9	5.5	

Caution: approximate values; significant deviations possible in individual cases.

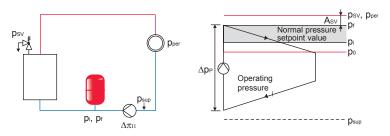
** If the floor heating is operated and protected as part of the overall system with lower flow temperatures, vs** must be used to calculate the total water volume

 n_{FH} = percentage expansion based on the max. flow temperature of the floor heating

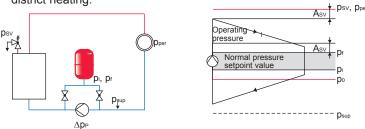
Approx. water content of heating pipes


																300
Liters/m	0.13	0.21	0.38	0.58	1.01	1.34	2.1	3.2	3.9	5.3	7.9	12.3	17.1	34.2	54.3	77.9

Hydraulic integration

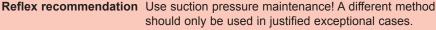

The hydraulic integration of pressure maintenance in the overall system greatly influences the pressure profile. This is made up of the normal pressure level of the pressure maintenance and the differential pressure generated when the circulating pump is running. Three main types of pressure maintenance are distinguished, although additional variants exist in practice.

Input pressure maintenance (suction pressure maintenance)


The pressure maintenance is integrated **before** the circulating pump, i.e. on the suction side. This method is used almost exclusively since it is the easiest to manage.

Follow-up pressure maintenance The pressure maintenance is integrated **after** the circulating pump, i.e. on the pressure side. When calculating the normal pressure, a system-specific differential pressure share of the circulating pump (50 ... 100%) must be included. This method is restricted to a limited number of applications \rightarrow solar energy systems.

Medium pressure maintenance The measuring point of the normal pressure level is "moved" into the system by means of an analogy measurement section. The normal and operating pressure levels can be perfectly coordinated in a variable manner (symmetrical, asymmetrical medium pressure maintenance). Due to the technically demanding nature of this method, its use is restricted to systems with complicated pressure ratios, mainly in the field of district heating.


- Advantages: - Low normal pre
 - Low normal pressure level
 - Operating pressure
 normal pressure, thus no risk of vacuum formation
- Disadvantages:

 High operating pressure in the case of high circulating pump pressure (large-scale systems); pper must be observed
- Advantages:
- Low normal pressure level, provided the full pump pressure is not required

7

- Disadvantages:
 High normal pressure level
 - Increased need to observe the required supply pressure p_{sup} for the circulating pump according to manufacturer specifications
- Advantages:

 Optimized, variable coordination of operating and normal pressure
- Disadvantages:
 Highly demanding with regard to system technology

Contact us for more information!

Special pressurization systems - overview

Reflex manufactures two different types of pressurization system:

- Reflex diaphragm expansion vessels with gas cushions can function without auxiliary energy and are thus also classed as static pressurization systems. The pressure is created by a gas cushion in the vessel. To enable automatic operation, the system is ideally combined with reflex 'magcontrol' make-up stations as well as reflex 'servitec' make-up and degassing stations.
- Reflex pressurization systems with external pressure generation require auxiliary energy and are thus classed as dynamic pressurization systems. A differentiation is made between pump- and compressor-controlled systems. While reflex 'variomat' and reflex 'gigamat' control the system pressure directly on the water side using pumps and overflow valves, the pressure in reflex 'minimat' and 'reflexomat' systems is controlled on the air side by means of a compressor and solenoid valve.

Both systems have their own advantages. Water-controlled systems, for example, are very quiet and react very quickly to changes in pressure. Thanks to the unpressurized storage of the expansion water, such systems can also be used as central deaeration and degassing units ('variomat'). Compressor-controlled systems, such as 'reflexomat', offer extremely flexible operation within the tightest pressure limits, specifically within \pm 0.1 bar (pump-controlled approx. \pm 0.2 bar) of the setpoint value.

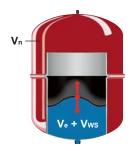
A degassing function can also be implemented in this case in combination with reflex 'servitec'.

Our Reflex calculation program will help you identify the ideal solution.

8

Preferred applications are detailed in the following table. Based on experience, we recommend that the pressure maintenance be automated – i.e. pressure monitoring with timely water make-up – and that systems be automatically and centrally vented. This eliminates the need for conventional air separators and laborious post-venting, while ensuring safer operation and lower costs

'Degassing of heating and cooling systems' This brochure explains when and why the use of degassing systems is required, particularly in closed systems.



	Standard pressure maintenance Flow temp. up to 120°C	Pressure maint.	Autom. operation with make- up		Preferred output range	
'reflex' expan- sion vessel	 Without additional equipment With 'control' make-up With 'servitec' 	X X X	× ×	 X	Up to 1,000 kW	it i i i i i i i i i i i i i i i i i i
'variomat'	 Single-pump system Single-pump system Dual-pump system 	X X X	X X X	X X X	150 - 2,000 kW 150 - 4,000 kW 500 - 8,000 kW	
'gigamat'	 Without additional equipment With 'servitec' 	X X	X X	X* X	5,000 - 60,000 kW	
'minimat'	 Special systems Without additional equipment With 'control' make-up With 'servitec' 	X X X	A X X	s required	100 - 2,000 kW	
'reflexomat'	 Without additional equipment With 'control' make-up With 'servitec' 	X X X	× ×	 X	150 - 24,000 kW	

* In the case of return temperatures < 70°C, reflex 'gigamat' can also be used for degassing purposes without additional equipment

Reflex diaphragm expansion vessels types: 'reflex N, F, S, G'

Nominal volume Vn

Pressure monitoring

Input pressure po

Minimum operating

Initial pressure pa

Water make-up

pressure

The pressure in the expansion vessel is generated by a gas cushion. The water level and pressure in the gas space are linked (p x V = constant). Therefore, it is not possible to use the entire nominal volume for water intake purposes. The nominal volume is greater than the water intake volume $V_e + V_{WS}$ by a factor of $\frac{p_f + 1}{p_r - p_0}$.

This is one reason why dynamic pressurization systems are preferable in the case of larger systems and small pressure ratios ($p_f - p_0$). When using reflex 'servitec' degassing systems, the volume of the degassing pipe (5 liters) must be taken into account during sizing.

The gas input pressure must be manually checked before commission-

ing and during annual maintenance work; it must be set to the minimum operating pressure of the system and entered on the name plate. The

planner must specify the gas input pressure in the design documentation. To avoid cavitation on the circulating pumps, we recommend that the minimum operating pressure not be set to less than 1 bar, even in the case of roof-mounted systems and heating systems in low-rise buildings.

The expansion vessel is usually integrated on the suction side of the

circulating pump (input pressure maintenance). In the case of pressure-

side integration (follow-up pressure maintenance) the differential pressure of the circulating pumps Δp_P must be taken into account to avoid

When calculating p_0 , we recommend the addition of 0.2 bar safety margin. This margin should only be dispensed with in the case of very small

vacuum formation at high points.

pressure ratios.

Without degassing

With reflex 'servitec'

Input pressure maintenance

 $p_0 \ge p_{st} + p_e + 0.2 \text{ bar}$ $p_0 \ge 1 \text{ bar}$ Reflex recommendation

Reflex formula for initial

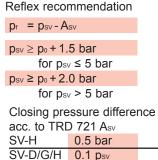
pressure

 $p_i \ge p_0 + 0.3$ bar

Follow-up pressure maintenance $p_0 \ge p_{st} + p_e + \Delta p_P$

9

This is one of the most important pressures! It limits the lower setpoint value range of the pressure maintenance and safeguards the water seal V_{ws} , that is the minimum water level in the expansion vessel.


Accurate checking and monitoring of the input pressure is only ensured if the Reflex formula for the input pressure is followed. Our calculation program takes this into account. With these higher input pressures compared to traditional configurations (larger water seal), stable operation is assured. Known problems with expansion vessels caused by an insufficient or even missing water seal are thus avoided. Particularly in the case of small differences between the final pressure and input pressure, the new calculation method can result in somewhat larger vessels. However, in terms of enhanced operational safety, the difference is insignificant.

reflex 'control' make-up stations automatically monitor and secure the initial or filling pressure. \rightarrow reflex 'control' make-up stations

Filling pressure p_{fil} The filling pressure p_{fil} is the pressure that must be applied, relative to the temperature of the filling water, to fill a system such that the water seal V_{WS} is maintained at the lowest system temperature. In the case of heating systems, the filling pressure and initial pressure are generally the same (lowest system temperature = filling temperature = 10°C). In cooling circuits with temperatures below 10°C, for instance, the filling pressure is higher than the initial pressure.

Final pressure p_f The final pressure restricts the upper setpoint value range of the pressure maintenance. It must be set such that the pressure on the system safety valve is lower by at least the closing pressure difference A_{SV} in accordance with TRD 721. The closing pressure difference depends on the type of the safety valve.

Degassing Targeted venting is very important, particularly in the case of closed systems; otherwise, accumulations of nitrogen in particular can lead to troublesome malfunctions and customer dissatisfaction. reflex 'servitec' degases and makes up water automatically. \rightarrow p. 28

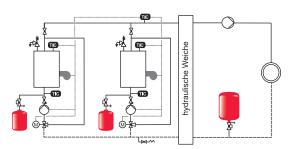
0.3 bar for

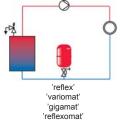
 $p_{sv} < 3 bar$

Heating systems

Calculation According to DIN 4807 T2 and DIN EN 12828

- **Configuration** Usually in the form of suction pressure maintenance as per adjacent diagram with circulating pump in advance and expansion vessel in return i.e. on the suction side of the circulating pump
- **Properties n, p**_e Generally properties for pure water without antifreeze additive \rightarrow page 6
- Expansion volume V_e Calculation of percentage expansion, usually between lowest temperature Highest temperature t_{TR} = filling temperature = 10°C and highest setpoint value adjustment of temperature regulator t_{TR}
- Minimum operating pres- Particularly in the case of low-rise buildings and roof-mounted systems, sure p₀ the low static pressure pst requires that the minimum supply pressure for the circulating pump be verified on the basis of manufacturer specifications. Even with lower static heights, we therefore recommend that the minimum operating pressure p₀ not be set to less than 1 bar.
 - $\label{eq:Filling pressure p_{fil}} \ensure \ensuremath{\textbf{Since a filling temperature of 10^{\circ}C generally equates to the lowest system} \\ \ensuremath{\textbf{Initial pressure } p_a} \ensuremath{\temperature, the filling pressure and input pressure of an expansion vessel are identical.} \\ \ensuremath{\temperature, the case of pressurization systems, it should be noted that filling and the case of pressuremath{\temperature, temperature, temperature$

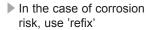

make-up systems may have to operate at a level approaching the final pressure. This only applies to 'reflexomat'.


Pressure maintenance In the form of static pressure maintenance with 'reflex N, F, S, G' also in combination with the make-up and degassing stations 'control' and 'servitec', or from approx. 150 kW as a 'variomat' pressurization station for pressure maintenance, degassing and water make-up, or in the form of a compressor-controlled 'reflexomat' pressurization station. → page 18

In systems with oxygen-rich water (e.g. floor heating with non-diffusionresistant pipes), 'refix D', 'refix DE' or 'refix DE junior' are used up to 70°C (all water-carrying parts corrosion-resistant).

- **Degassing, deaeration,** To ensure ongoing safe and automatic operation of the heating system, water make-up the pressurization units should be equipped with make-up systems and supplemented with 'servitec' degassing systems. More information can be found on page 28.
 - In-line vessels If a temperature of 70°C is permanently exceeded by the pressure maintenance, an in-line vessel must be installed to protect the diaphragms in the expansion vessel. → page 43
 - Individual protection According to DIN EN 12828, all heat generators must be connected to at least one expansion vessel. Only protected shut-offs are permitted. If a heat generator is shut off hydraulically (e.g. in-line boiler circuits), the connection with the expansion vessel must remain intact. Therefore, in the case of multi-boiler systems, each boiler is usually secured with a separate expansion vessel. This is only included in the calculation for the relevant boiler water content.

Due to the excellent degassing performance of 'variomat', we recommend that the switch frequency be minimized by also fitting a diaphragm expansion vessel (e.g. 'reflex N') to the heat generator in this case.



Caution with roof-mounted systems and low-rise buildings

Reflex recommendation:

```
p₀ ≥ 1 bar
```


'reflex N, F, G' in heating systems

Configuration

Object:

Initial data Heat generator

Heat output

Water content

System flow temperature

Water content known

Temperature regulator

Safety temperature limiter

Pressure calculation

Reflex recommendation $p_0 \ge 1.0$ bar

Safety value actuation $p_{SV} \rightarrow Reflex$ recommendation

 $p_f \leq p_{SV}$

pf

Antifreeze additive

Static pressure

System return temperature

Highest setpoint value adjustment

Input pressure maintenance, expansion vessel in return, circulating pump in advance, observe information on page 9 for follow-up pressure maintenance.

2

..... kW

→ p. 6

 $p_0 = \dots + (0.2 \text{ bar})^{1} = \dots \text{ bar}$

psv ≥ = bar

- 0.1 x p_{SV} for $p_{SV} > 5$ bar

≤ = bar

1

Q_h = kW

t_E

t_R

 V_{s}

V_w = liters

= °C

= °C

=%

ttr =°C

t_{STL} =°C

p_{st} = bar

Input pressure p_0 = stat. pressure p_{st} + evaporation pressure p_e + (0.2 bar)¹⁾

Final pressure $p_f \le$ safety valve p_{SV} - closing pressure difference acc. to TRD 721 $p_f \le p_{SV}$ - 0.5 barfor $p_{SV} \le 5$ bar

= liters

3

(with antifreeze additive n*)

with antifreeze additive pe*)

Evaporation pressure pe at > 100°C

..... kW

 \rightarrow p. 6 Approximate water content

 $v_s = f(t_F, t_R, Q)$

 \rightarrow p. 6 Percentage expansion n

4

..... kW

Q_{tot} = kW

= liters

= %

= bar

= bar

psv = bar

p_f = bar

p_{st} = bar

n

De

p₀

12

If R > 70°C, 'V in-line vessel' required

¹⁾ Recommendation

Check rec. supply pressure of circulation pump as per manufacturer specifications

Check compliance with perm. operating pressure

11

Vessel

Water seal Vws = 0.005 x Vs for	or $V_n > 15$ liters with $V_{ws} \ge 3$ liters	
Vws ≥ 0.2 x Vn fo	or V₀ ≤ 15 liters	Vws = lite
Vws ≥x =	x = liters	
Nominal volume	p. +1	
Without 'servitec' $V_n = (V_e + V_{WS})$		
With 'servitec' $V_n = (V_e + V_{WS} + 5 \text{ liter})$	rs) x $\frac{p_{f} + 1}{p_{f} - p_{0}}$	V _n = lit
V _n ≥	x = liters	
	Selected Vn 'reflex' = liters	

Without 'servitec' pi = - - 1 bar $V_{e}(p_{f} + 1)(n + n_{R})$ 1+ $V_n(p_0+1) 2n$ p_f + 1 $\frac{P^{r+1}}{1+(V_e+5 \text{ liters})(p_f+1)(n+n_R)}$ With 'servitec' pi = 1 bar = bar $V_n(p_0+1) 2n$ – - 1 bar = bar Di 1+

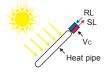
Condition: $p_i \ge p_0 + 0.25...0.3$ bar, otherwise calculation for greater nominal volume

 Filling pressure
 Initial pressure at 10°C filling temperature

Result summary

'reflex ...' / ... bar liters 'refix ...' / ... bar liters 'refix' only for oxygen-rich water (e.g. floor heating)

Solar heating plants (solar energy systems)


Calculation On the basis of VDI 6002 and DIN 4807 T2

In the case of solar heating plants, the highest temperature cannot be defined via the regulator on the heat generator, but instead is determined by the stagnation temperature on the collector. This gives rise to two possible calculation methods.

Direct heating in a flat collector or direct-flow tube collector

Indirect heating in a tube collector according to the heat pipe principle

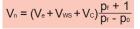
Note manufacturer specifications for stagnation temperatures!

Nominal volume without evaporation

$$V_n = (V_e + V_{WS}) \frac{p_f + 1}{p_f - p_0}$$

Nominal volume Calculation without evaporation in the collector

The percentage expansion n* and evaporation pressure p_e^* are based on the stagnation temperature. Since some collectors can reach temperatures of over 200°C, this calculation method cannot be applied here. In the case of indirectly heated tube collectors (heat pipe system), it is possible for systems to restrict the stagnation temperature. If a minimum operating pressure of $p_0 \le 4$ bar is sufficient to prevent evaporation, the calculation can usually be performed without taking evaporation into account.

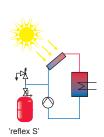

With this option, it should be noted that an increased temperature load will impact the antifreeze effect of the heat transfer medium in the long term.

Nominal volume Calculation with evaporation in the collector

For collectors with stagnation temperatures in excess of 200°C, evaporation in the collector cannot be excluded. In this case, the evaporation pressure is only included in the calculation up to the desired evaporation point (110 - 120°C). When calculating the nominal volume of the expansion vessel, the entire collector volume V_c is included in addition to the expansion volume Ve and the water seal V_{ws}.

This is the preferred option, as the lower temperature has a lesser impact on the heat transfer medium and the antifreeze effect is maintained for a longer period.

Nominal volume with evaporation



- **Configuration** Since the expansion vessel with safety valve in the return must be installed such that it cannot be shut off from the collector, this inevitably leads to follow-up pressure maintenance, i.e. integration of the expansion vessel on the pressure side of the circulating pump.
- **Properties n*, p**_e* When determining the percentage expansion n* and the evaporation pressure p_e^* , antifreeze additives of up to 40% must be taken into account in accordance with manufacturer specifications. \rightarrow p. 6, properties for water mixtures with Antifrogen N

If calculating with evaporation, the evaporation pressure p_{e^*} is included up to the boiling temperature 110°C or 120°C. The percentage expansion n* is then determined between the lowest ambient temperature (e.g. -20°C) and the boiling temperature.

If calculating without evaporation, the evaporation pressure p_e^* and the percentage expansion n^* must be based on the stagnation temperature of the collector.

- **Input pressure** p_0 Depending on the calculation method employed, the minimum operating pressure (= input pressure) is adapted to the stagnation temperature in the collector (= without evaporation) or the boiling temperature (= with evaporation). In both cases, the normal configuration of the circulating pump pressure ΔpP must be taken into account since the expansion vessel is integrated on the pressure side of the circulating pump (follow-up pressure maintenance).
- **Filling pressure p**_{fil} As a rule, the filling temperature (10°C) is much higher than the lowest **Initial pressure p**_a system temperature, such that the filling pressure is greater than the initial pressure.
- **Pressure maintenance** Generally in the form of static pressure maintenance with 'reflex S', also in combination with 'magcontrol' make-up stations.
 - **In-line vessels** If a stable return temperature \leq 70°C cannot be guaranteed on the consumer side, an in-line vessel must be fitted to the expansion vessel. \rightarrow p. 39

With evaporation $p_e^* = 0$ $n^* = f$ (boiling temp.)

Without evaporation p_e* = f (stagnation temp.) n* = f (stagnation temp.)

Without evaporation

 $p_0 = p_{st} + p_e^*(stagnation) + \Delta p_P$

With evaporation $p_0 = p_{st} + p_e^*(boiling) + \Delta p_P$

13

Enter set input pressure on name plate

reflex 'S' in solar energy systems with evaporation

Calculation method:

The minimum operating pressure p₀ is calculated such that no evaporation occurs up to flow temperatures of 110°C or 120°C – i.e. evaporation is permitted in the collector at stagnation temperature.

Configuration

Follow-up pressure maintenance, expansion vessel in return to collector.

Object:

14

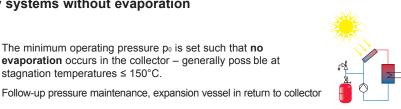
Initial data

Collector surface area	Ac		A _{Ctot} = z x A _C	A _{Ctot} = m ²	A _{Ctot} = bar
Water content per collector	Vc	liters	$V_{Ctot} = z \times A_C$	V _{Ctot} = liters	V _{Ctot} = liter
Highest flow temperature Lowest ambient temperature Antifreeze additive	ta	110°C or 120°C - 20°C %	→ p. 6 Percentage evaporation press	•	n* = % p _e * = bar
Static pressure	pst	bar			p _{st} = bar
Difference at circulating pump	∆р⊳	bar			∆p _P = bar

Pressure calculation

		= stat. pressure p_{st} + pump pressure Δp_P + evaporation pressure p_e^*	
	Ę	₀₀ = + + bar	p₀ = bar
	Safety valve actuation	$P_{SV} \rightarrow \text{Reflex recommendation}$	
	•	$p_{SV} \ge \text{input pressure } p_0 + 1.5 \text{ bar for } p_{SV} \le 5 \text{ bar}$	
		$p_{sv} \ge nput pressure p_0 + 2.0 bar for p_{sv} > 5 bar$	psv = bar
		bsv ≥ = bar	
•		or ≤ safety valve psv – Closing pressure difference acc. to TRD 721	
		-0.5 bar for psv -0.5 bar	
	'	$p_{\rm r} \leq p_{\rm sv}$ $-0.1 \text{bar x} p_{\rm sv} > 5 \text{bar}$	p _f = bar
		or ≤ = bar	
	ŀ		
	Vessel		
	System volume	V_s = collector vol. V _{Ctot} + pipelines + buffer tank + other	
	2	$s'_{s} = $	V_s = liters
		= liters	
	Expansion ,	$V_{\rm e} = \frac{n^*}{1000}$ x V _s = +	
	volume	$V_{e} = \frac{n^{*}}{100}$ x V _s = + = liters	V _e = liters
		$V_{WS} = 0.005$ x V _s for V _n > 15 liters with V _{WS} \ge 3 liters	
	N	$V_{WS} \ge 0.2$ x V_n for $V_n \le 15$ liters	Vws = liters
	N	/ws≥ x = liters	
	Nominal volume		
	N	$V_n = (V_e + V_{WS} + V_{Ctot}) \qquad x \frac{p_f + 1}{p_f - p_0}$	
		p f - p 0	V _n = liters
	N	/n ≥ x = liters	
		Selected Vn 'reflex S' = liters	
	Check of		-
	initial pressure	$p_{i} = \frac{p_{f}+1}{1} - 1$ bar	
		$p_{i} = \frac{p_{f} + 1}{1 + \frac{(V_{e} + V_{Ctot})(p_{f} + 1)}{V_{n}(p_{0} + 1)}} - 1 \text{ bar}$	
			p _i = bar
	ł	n = – 1 bar = bar	pi – bai
		1+	
	Condition:	$p_0 \ge p_0 + 0.250.3$ bar, otherwise calculation for greater nominal volume	
		n Between lowest temperature (- 20°C) and filling temperature (usually 10°C)	
		\rightarrow p. 6 n_{F}^{*} =%	n* _F = %
	Filling pressure	p	
	5 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$p_{fil} = V_n x \frac{p_0 + 1}{V_{0-1}V_0 x p_0^* - V_{000}} - 1 bar$	
		$V_n - V_s \times n_F^* - V_{WS}$	p _{fil} = bar
		p _{fil} = 1 bar = liters	
		•	
	Result summary		
	'reflex S'/10 bar lite	s Input pressure $p_0 = \dots $ bar \rightarrow check before	commissioning

Initial pressure p_i = bar \rightarrow check make-up configuration


Filling pressure p_{fil} = bar \rightarrow refilling of system

Final pressure p_f = bar

- Check compliance with minimum supply pressure p_{sup} for circulating pumps acc. to manufac-
- Check compliance with perm. operating pressure

turer specifications. $p_{sup} = p_0 - \Delta \pi \Pi$

reflex 'S' in solar energy systems without evaporation

Configuration

Calculation method:

Object:

Initial data

Number of collectors Collector surface area		units m²	A _{Ctot} = z x A _C	A _{Ctot} = m ²	A _{ctot} = bar
Water content per collector	r Vc	liters	$V_{Ctot} = z \times A_C$	V _{Ctot} = liters	V _{Ctot} = liters
Highest advance temperature Lowest ambient temperature Antifreeze additive		- 20°C %	→ p. 6 Percentage e evaporation press		n* = % p _e * = bar
Static pressure	pst	bar			p _{st} = bar
Difference at circulating pump	∆р⊳	bar			∆p _P = bar

The minimum operating pressure p_0 is set such that **no** evaporation occurs in the collector - generally poss ble at

stagnation temperatures $\leq 150^{\circ}$ C.

Pressure calculation

Input pressure	$\begin{array}{llllllllllllllllllllllllllllllllllll$	p₀ = bar
Safety valve actuation	$p_{sv} \rightarrow Reflex recommendation$	
pressure	psv ≥ input pressure p₀ + 1.5 bar for psv ≤ 5 bar	n = har
	$p_{SV} \ge input \text{ pressure } p_0 + 2.0 \text{ bar for } p_{SV} > 5 \text{ bar}$	psv = bar
	psv ≥ + bar	
Final pressure	p _f ≤ safety valve p _{SV} – Closing pressure difference acc. to TRD 721	
	$p_f \le p_{SV}$ - 0.5 bar for $p_{SV} \le 5$ bar	n = har
	$p_f \le p_{SV}$ - 0.1 bar x $p_{SV} > 5$ bar	p _f = bar
	p _f ≤ = bar	

Vessel

	= collector vol. V _{Ctot} + pipelines + buffer tank + other = +	V _s = liters
	= liters	
Expansion volume Ve	$x = \frac{n^*}{100}$ $x V_s = + = liters$	V _e = liters
Water seal V	$v_s = 0.005$ x V _s for V _n > 15 liters with V _{ws} \ge 3 liters	
V	$v_s \ge 0.2$ x V_n for $V_n \le 15$ liters	Vws = liters
V	vs≥ x = liters	
	$ = (V_e + V_{WS}) \qquad \qquad x \frac{p_f + 1}{p_f - p_0} $ $ \geq \dots \qquad \qquad$	Vn = liters
Check of initial pressure pi pi	$= \frac{p_{f}+1}{1 + \frac{V_{e}(p_{f}+1)}{V_{n}(p_{0}+1)}} - 1 \text{ bar}$ = $\frac{1}{1 + \frac{1}{1 + \frac{1}{$	p; = bar
Condition: pi	$\geq p_0 + 0.250.3$ bar, otherwise calculation for greater nominal volume	
Percentage expansion	Between lowest temperature (- 20°C) and filling temperature (usually 10°C) $\rightarrow p.~6$ $n^{*}{}_{F}$ =%	n* _F = %
Filling pressure	$p_{fil} = V_n x \frac{p_0 + 1}{V_n - V_s x n_F^* - V_{Ws}} - 1 bar$ $p_{fil} = \dots - 1 bar = \dots liters$	p _{fil} = bar
Result summary		
'reflex S'/10 bar liters	Input pressure p_0 = bar \rightarrow check before	commissioning

Initial pressure p_i = bar \rightarrow check make-up configuration

Filling pressure p_{fil} = bar \rightarrow refilling of system

Final pressure p_f = bar

Check compliance with perm. operating pressure

15

Cooling water systems

Calculation	On the basis of DIN EN 12828 and DIN 4807 T2	
Calculation	On the basis of Div EN 12020 and Div 4007 12	1
Configuration	In the form of input pressure maintenance as per adjacent diagram with expansion vessel on the suction side of the circulating pump, or in the form of follow-up pressure maintenance.	3
Properties n*	When determining the percentage expansion n*, antifreeze additives appropriate for the lowest system temperature must be included in accordance with manufacturer specifications. For Antifrogen N \rightarrow p. 6	
Expansion volume V₀	Calculation of the percentage expansion n [*] usually between the lowest system temperature (e.g. winter downtime: -20° C) and the highest system temperature (e.g. summer downtime +40°C).	
Minimum operating pressure p₀	Since no temperatures > 100°C are used, no special margins are required.	Enter set pressure plate
	In many cases, the lowest system temperature is less than the filling tem- perature, meaning that the filling pressure is higher than the initial pressure.	
16 Pressure maintenance	Generally in the form of static pressure maintenance with 'reflex', also in combination with 'control' and 'servitec' make-up and degassing stations.	
Degassing, deaeration, water make-up	To ensure ongoing safe and automatic operation in cooling water systems, the pressurization units should be equipped with make-up systems and supplemented with 'servitec' degassing systems. This is particularly important with cooling water systems, since no thermal deaeration effects apply. More information can be found on page 28.	
In-line vessels	Although 'reflex' diaphragms are suitable for temperatures down to -20°C and vessels to -10°C, the possibility of the diaphragms freezing to the container cannot be excluded. We therefore recommend the integration of a 'V in-line vessel' in the return to the refrigerating machine at temperatures $\leq 0^{\circ}$ C. \rightarrow page 39	
Individual protection	As in the case of heating systems, we recommend the use of individual protection for multiple refrigerating machines. \rightarrow Heating systems, p. 10	

'reflex'

 Enter set input pressure on name plate

'reflex N, F, S, G' in cooling water systems

Return temperature to refrigerating machinet $_{R}~$ = °C Advance temperature to refrigerating machinet $_{F}~$ = °C

Percentage expansion between lowest temperature and filling temperature

Configuration

Object:

Initial data

Lowest system temperature

Highest system temperature

Percentage expansion $n^* \rightarrow .6$

Antifreeze additive

Static pressure

Pressure calculation

Input pressure maintenance, expansion vessel on suction side, circulating pump, observe information on page 9 for follow-up pressure maintenance –

n* = n* at highest temp. (tsmax or tR) - n* at lowest temp. (tsmin or tF) n* =

 $t_{\text{Smin}} = \dots \text{ liters (e.g. winter downtime)}$ $t_{\text{Smax}} = \dots \text{ liters (e.g. summer downtime)}$

= %

pst = bar

n* = %

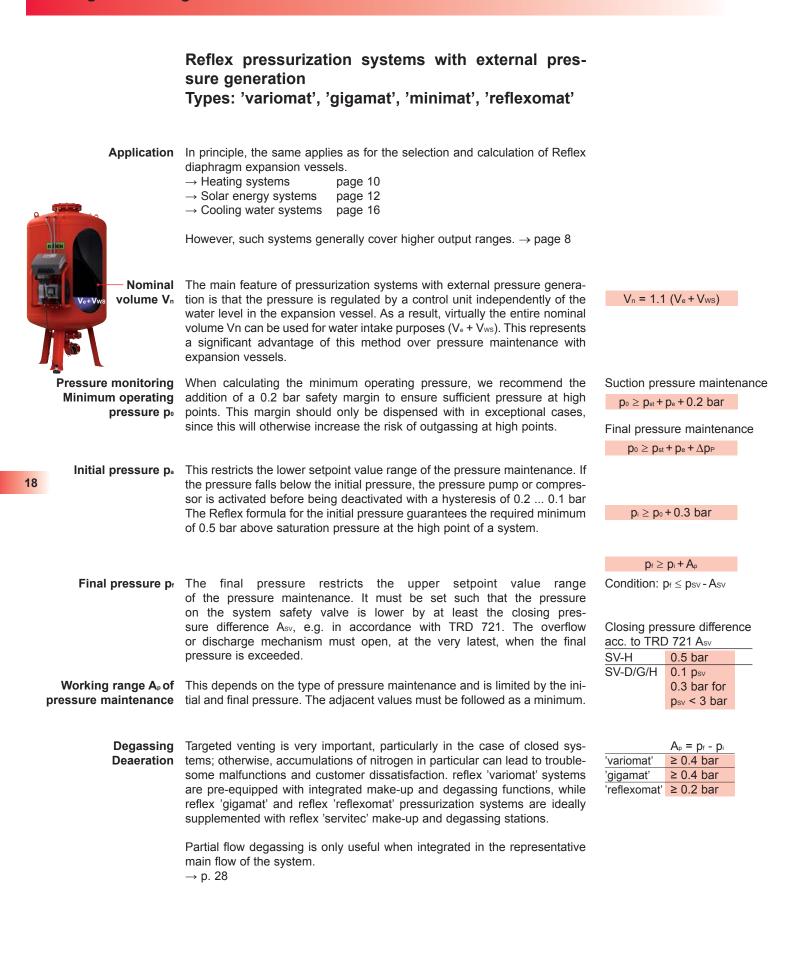
n⊧* = %

pst = bar

= °C

If R > 70°C, 'V in-line vessel' required

¹⁾ Recommendation


- Check rec. supply pressure of circulation pump as per manufacturer specifications
- Check compliance with perm. operating pressure

17

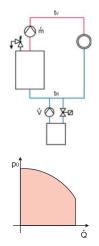
Input pressure	p ₀ = static pressure p _{st}	+ (0.2 bar) ¹⁾			
	$p_0 = \dots$	(1)	ar	p ₀	= bar
	$p_{sv} \rightarrow Reflex recommen$				
Salety valve actuation pressure	$p_{SV} \ge input pressure p_0$	+ 1.5 bar for $p_{SV} \leq 5$ bar			
	$p_{sv} \ge input pressure p_0$	+ 2.0 bar for $p_{SV} \leq 5$ bar		psv	= bar
		+ = ba	ar		
	pr ≤ safety valve psv	- Closing pressure difference acc. to TF			
	pr ≤ psv	-0.5 bar for psv ≤ 5 bar			
	$p_f \leq p_{SV}$	-0.1 bar for psv ≤ 5 bar		pf	= bar
		ba	ar		
	p: =				
/essel					
System volume	Vs	Refrigerating machines: li	ters		
2		Cooling registers : lit			
		Buffer tanks : lit			
		Pipelines :lit		Vs	= liter
		Other :lit			
		System volume V _s : lift			
Expansion volume	$V_{e} = \frac{11^{\circ}}{100} \times V_{s}$	== liters		Ve	= liter
Water seal	V _{ws} = 0.005x V _s	for $V_n > 15$ liters with $V_{WS} \ge 3$ liters	3		
	$V_{WS} \ge 0.2 \times V_n$	for $V_n \le 15$ liters		Vws	= liter
		. = lit			
Nominal volume					
Without 'servitec'		$x = \frac{p_f + 1}{p_f - p_0}$			
With 'servitec'	$V_n = (V_e + V_{WS} + 5 \text{ liters})$) x $\frac{p_f + 1}{p_f - p_0}$		Vn	= liter
		/ pf - po			
	V _n ≥	x = li	ters		
		Selected Vn 'reflex' = lit			
Initial pressure check					
Without 'servitec'	$p_i = \frac{p_f + 1}{p_i + 1}$	——– 1 bar			
	$p_{i} = \frac{p_{f} + 1}{1 + \frac{V_{e}(p_{f} + 1)}{V_{n}(p_{0} + 1)}}$				
	ŭ ,				
	$p_{i} = \frac{p_{f} + 1}{1 + \frac{(V_{e} + 5 \text{ liters})(p_{f})}{V_{n}(p_{0} + 1)}}$	— – 1 bar			
	$1 + \frac{(V_e + 5 \text{ liters})(p_e)}{V_e + 1}$	<u>f + 1)</u>		pi	= bar
	p _i =	——————————————————————————————————————	ar		
	1+				
	$p_i = p_0 + 0.25 + 0.3 \text{ bar}$	therwise calculation for greater nominal volu	ume		
Filling procesure		and whice calculation for greater norminal vol	une		
Filling pressure	$p_{0} = \sqrt{x} - \frac{p_{0} + 1}{x}$	1 bar			
	$p_{fil} = V_n x \frac{p_0 + 1}{V_n - V_s x n_F^* - V}$			pfil	= bar
	ne =	v 1.bor – lit	ore		
	ρ⊪ −	x – 1 bar = lit	613		
Result summary					
-	la t				
'reflex' / bar liters		pressure $p_0 = \dots $ bar \rightarrow check b			•
	Initial	pressure p_i = bar \rightarrow check n	nake-u	p co	ntiguration
	Filling	g pressure p_{fil} = bar \rightarrow refilling	of sys	tem	

Final pressure p_f = bar

Compensating volume flow V

In the case of heating systems that are equipped with pressurization systems controlled by an external energy source, the required compensating volume flow must be determined on the basis of the installed nominal heat output of the heat generators.

For example, with a homogeneous boiler temperature of 140°C, the specific volume flow required is 0.85 l/kW. Deviations from this value are possible upon verification.


Cooling circuits are generally operated in a temperature range < 30° C. The compensating volume flow is approximately half that of heating systems. Therefore, when making selections using the heating system diagram, only half of the nominal heat output \hat{Q} must be taken into account.

To facilitate your selection, we have prepared diagrams allowing you to determine the achievable minimum operating pressure p_0 directly on the basis of the nominal heat output \dot{Q} .

Redundancy due to partial load behavior

To improve partial load behavior for pump-controlled systems in particular, we recommend that use of dual-pump systems, at least as of a heating output of 2 MW. In areas with particularly high operational safety requirements, the operator frequently demands system redundancy. In this context, it is practical to halve the output of each pump unit. Full redundancy is not generally required when you consider that less than 10% of the pump and overflow output is required during normal operation.

Not only are 'variomat 2-2' and 'gigamat' systems equipped with two pumps, but they also feature two type-tested overflow valves. Switching is performed on a load basis and in the case of malfunctions.

Reflex recommendation: Configuration 50% + 50% = 100% as of 2 MW dual-pump systems → 'variomat 2-2'

19

'variomat' ≤ 8 MW pump-controlled

'gigamat' ≤ 60 MW pump-controlled

'minimat' ≤ 2 MW compressor-controlled

'reflexomat' ≤ 24 MW compressor-controlled

reflex 'variomat' in heating and cooling systems

t⊧

t_R

٧s

1

Ů_h = kW

Vw = liters

= °C

= liters

= °C

t_{TR} =°C

tsть =°С

pst = bar

Safety valve actuation psv≥ final pressure + closing pressure difference Asv

рf

pf

Minimum operating p_0 = stat. pressure p_{st} + evaporation pressure p_e + (0.2 bar)¹

=%

Configuration

Object:

Initial data Heat generator

Heat output

Water content

System flow temperature

Water content known

Temperature regulator

Safety temperature limiter

Pressure calculation

Condition p₀ ≥ 1.3 bar

psv≥

pressure psv≥

Antifreeze additive

Static pressure

System return temperature

Highest setpoint value adjustment

Input pressure maintenance, 'variomat' in return, circulating pump in advance, observe information on page 9 for follow-up pressure maintenance

3

(with antifreeze additive n*)

→ p. 6 Evaporation pressure p_e at > 100°C

(with antifreeze additive pe*)

..... kW

→ p. 6 Approximate water content

 $v_s = f(t_F, t_R, \dot{Q})$

→ p.. 6 Percentage expansion n

4

. kW

= bar

2

..... kW

pressure p₀ =+ (0.2 bar)¹ = bar

+ 0.5 bar for $p_{SV} \leq 5$ bar

+ 0.1 x psv for psv > 5 bar

psv≥ +..... bar

Final pressure $p_f \ge$ minimum operating pressure $p_0 + 0.3$ bar + working range 'reflexomat' A_p

 $p_f \ge \dots + 0.3 \text{ bar} + 0.4 \text{ bar}$

Q_{tot} = kW

= liters

= %

= bar

= bar

= bar

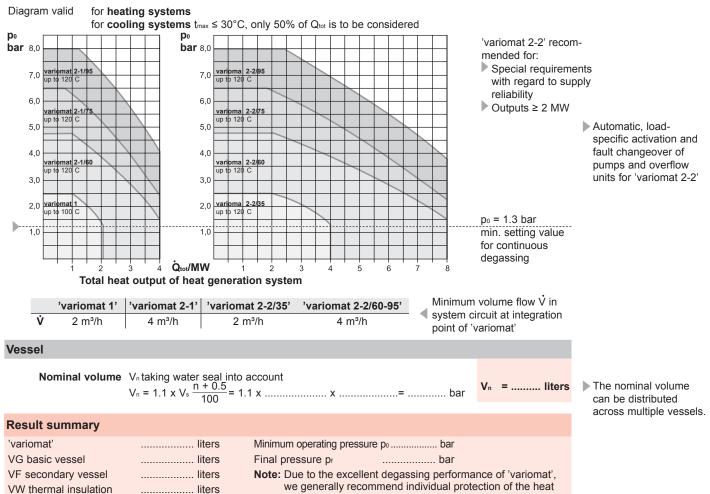
psv = bar

p_{st} = bar

n

pe

▶ If _R > 70°C, 'V in-line vessel' required trk max. 105°C


If 110 < STL ≤ 120°C,</p> contact our specialist department

¹⁾ The higher the value of p₀ over p_{st}, the better the degassing function; 0.2 bar is required as a minimum

Check compliance with perm. operating pressure

20

Control unit selection

(for heating systems only)

generator using 'reflex' diaphragm expansion vessels.

reflex 'gigamat' in heating and cooling systems

Configuration

Object:

Initial data Heat generator

Heat output

Water content

System water content

Temperature regulator

Safety temperature limiter

Antifreeze additive

Static pressure

Specific values

Highest setpoint value adjustment

Input pressure maintenance, 'gigamat' in return, circulating pump in advance, observe information on page 9 for follow-up pressure maintenance

1

Q_h = kW

V_s =°C

t_{TR} =°C

t_{STL} =°C

pst = bar

Minimum operating p_0 = stat. pressure p_{st} + evaporation pressure p_e + (0.2 bar)¹

Safety valve actuation psv ≥ final pressure + closing pressure difference Asv

pf

pf

= %

V_w = liters

2

..... kW

→ p. 6

pressure $p_0 = \dots + \dots + (0.2 \text{ bar})^{1} = \dots \text{ bar}$

+ 0.5 bar for psv ≤ 5 bar

+ 0.1 x psv for psv > 5 bar

Final pressure $p_f \ge minimum$ operating pressure $p_0 + 0.3$ bar + working range 'reflexomat' A_p

 $p_f \ge \dots + 0.3 \text{ bar} + 0.4 \text{ bar}$

3

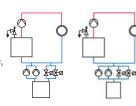
(with antifreeze additive n*)

with antifreeze additive pe*)

Evaporation pressure pe at > 100°C

..... kW

 \rightarrow p. 6 Approximate water content


 $v_s = f(t_F, t_R, \dot{Q})$

→ p. 6 Percentage expansion n

4

= bar

..... kW

n

De

p₀

Df

Q_{tot} = kW

V_s = liters

= %

= bar

= bar

= bar

psv = bar

Vn = liters

pst = bar

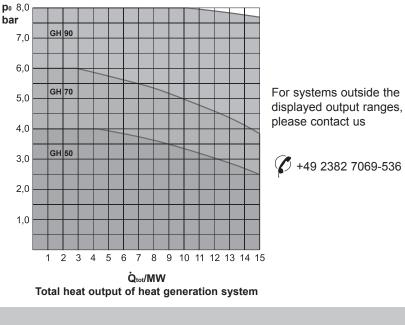
- ▶ If _R > 70°C, 'V in-line vessel' required
- ▶ trr max. 105°C
- If 110 < STL ≤ 120°C, con-</p> tact our specialist department

¹⁾ Recommendation

Check compliance with perm. operating pressure

21

psv≥ +...... bar **Control unit selection**


Diagram valid for heating systems STL ≤ 120°C

Condition $p_0 \ge 1.3$ bar

psv≥

pressure psv≥

for cooling systems $t_{max} \leq 30^{\circ}C$, only 50% of \dot{Q}_{tot} is to be considered

The nominal volume can be distr buted across multiple vessels.

Result summary

Vessel

- GH hydraulic unit GG basic vessel GF secondary vessel
- liters liters

Minimum operating pressure po bar bar

Final pressure pr

Nominal volume Vn taking water seal into account $V_n = 1.1 \text{ x } V_s \frac{n + 0.5}{100} = 1.1 \text{ x } \dots \text{ x} \dots \text{ x}$ bar

reflex 'minimat' and 'reflexomat' in heating and cooling systems

pst = bar

Configuration

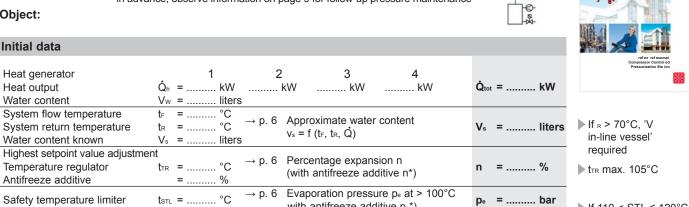
Input pressure maintenance, 'minimat', 'reflexomat' in return, circulating pump in advance, observe information on page 9 for follow-up pressure maintenance

Initial data

Heat output

Heat generator

Water content


System flow temperature

Water content known

Temperature regulator

Antifreeze additive

Static pressure

. 1)

with antifreeze additive pe*)

If 110 < STL ≤ 120°C,</p> contact our specialist department

¹⁾ Recommendation

Check compliance with perm.

operating pressure

= bar

pst = bar

pe

Pressure calculation

Safety temperature limiter

	p₀ = bar
pressure $p_0 = \dots + \dots + (0.2 \text{ bar})^1 = \dots$ bar	
Recommendation $p_0 \ge 1.0$ bar	
Final pressure $p_f \ge minimum$ operating pressure $p_0 + 0.3$ bar + working range 'reflexomat' A_p	p _f = bar
+ 0.3 bar + 0.2 bar = bar	p₁ – bai
Safety valve psv ≥ final pressure + closing pressure difference Asv	
actuation pressure $p_{SV} \ge p_f + 0.5$ bar for $p_{SV} \le 5$ bar	psv = bar
$p_{SV} \ge p_f + 0.1 \text{ x } p_{SV} \text{ for } p_{SV} > 5 \text{ bar}$	psv – bai
psv≥ + bar	

Control unit selection

RG basic vessel liters

..... liters

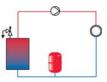
or

'minimat' MG

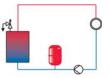
Diagram valid for heating systems for cooling systems $t_{max} \le 30^{\circ}$ C, only 50 % of \dot{Q}_{tot} is to be considered **Po** 10,0 **p**o 10,0 bar bar _{9.0} 9,0 8,0 8.0 7.0 7,0 60 6,0 5.0 5,0 4,0 4,0 3,0 3,0 2.0 2.0 1.0 1.0 0.5 0.5 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 Automatic, load-specific activation **Q**tot/MW and fault changeover of compres-Total heat output of heat generation system sors for VS .../2 control units Vessel The nominal volume Nominal volume Vn taking water seal into account can be distr buted $V_n = 1.1 \text{ x} V_s \frac{n + 0.5}{100} = 1.1 \text{ x}$bar Vn = liters across multiple vessels. **Result summary** 'reflexomat' with Minimum operating pressure po bar Control unit VS/...../ Final pressure pf bar

22

District heating systems, large-scale and special systems

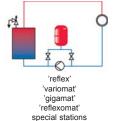

Calculation The usual approach for heating systems, e.g. using DIN EN 12828, is often not applicable to district heating systems. In this case, we recommend that you coordinate with the network operator and the relevant authorities for systems subject to inspection.

Contact us for more information!


- **Configuration** In many cases, the configurations for district heating systems differ from those used for heating installations. As a result, systems with follow-up and medium pressure maintenance are used in addition to classic input pressure maintenance. This has a direct impact on the calculation procedure.
- **Properties n, p**. As a rule, properties for pure water without antifreeze additive are used.
- Expansion volume V_● Due to the frequently very large system volumes and minimal daily and weekly temperature fluctuations, when compared to heating systems, the calculations methods employed deviate from DIN EN 12828 and often produce smaller expansion volumes. When determining the expansion coefficient, for example, both the temperatures in the network advance and the network return are taken into account. In extreme cases, calculations are only based on the temperature fluctuations between the supply and return.

Special pressure maintenance +49 2382 7069-536

Input pressure maintenance



Follow-up pressure maintenance

Medium pressure maintenance

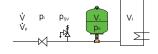
23

Minimum operating pressure pressure pressure pressure pressure p₀ of the heat exchanger and determined such that the permitted normal and operating pressures are maintained throughout the network and cavitation on the pumps and control fittings is avoided.

- **Initial pressure p**_a In the case of pressurization stations, the pressure pump is activated if the pressure falls below the initial value. Particularly in the case of networks with large circulating pumps, dynamic start-up and shutdown procedures must be taken into account. The difference between p_i and p₀ (= PL_{min}) should then be at least 0.5 ... 1 bar.
- Pressure maintenance In the case of larger networks, almost exclusively in the form of pressure maintenance with external pressure generation, e.g. 'variomat', 'gigamat', 'minimat' or 'reflexomat'. With operating temperatures over 105°C or safety temperatures STL > 110°C, the special requirements of DIN EN 12952, DIN EN 12953 or TRD 604 BI 2 can be applied.
 - **Degassing** We recommend that heat generation systems that do not have a thermal degassing system be equipped with a 'servitec' vacuum spray-tube degassing unit.

Potable water is essential to life! For this reason, the expansion vessels in drinking water installations must meet the special requirements of DIN 4807 T5. Only water-carrying vessels are permitted.

Hot water systems

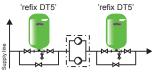

Calculation According to DIN 4807 T5 \rightarrow see form on p. 25

Configuration As per adjacent diagram.

sufficient.

As a rule, the safety valve should be installed directly at the cold water inlet of the water heater. In the case of 'refix DD' and 'DT5', the safety valve can also be fitted directly before the flow fitting (in water flow direction), provided that the following conditions are met: rofix DD' with

refix DD with	I-piece:	
Rp ¾	max. 200 I wate	r heater
Rp 1	max. 1,000 I wate	er heater
Rp 1¼	max. 5,000 I wate	er heater
'refix DT5' flow	fitting Rp 11/4:	
	max. 5,000 I wate	er heater



Enter set input pressure on name plate

'refix DT5

Enter set input pressure on name plate

Generally calculation between cold water temperature of 10°C and max. hot **Properties n, p** water temperature of 60°C. **Input pressure p**₀ The minimum operating pressure or input pressure p_0 in the expansion vessel must be at least 0.2 bar below the minimum flow pressure. Depending Minimum operating pressure on the distance between the pressure reducing valve and the 'refix' unit, the input pressure must be adjusted to between 0.2 and 1.0 bar below the set pressure of the pressure reducing valve. Initial pressure pa The initial pressure is identical to the set pressure of the pressure reducing valve. Pressure reducing valves are required in accordance with DIN 4807 T5 to ensure a stable initial pressure and thus achieve the full capacity of the 'refix' unit. Expansion vessel In potable water systems according to DIN 1988, only water-carrying 'refix' vessels meeting the specifications of DIN 4807 T5 must be used. In the case of non-potable water systems, 'refix' units with a single connection are sufficient. Pressure booster systems Calculation According to DIN 1988 T5: Technical rules for drinking water installations, pressure increase and reduction \rightarrow see form on p. 26 Configuration On the input pressure side of a PBS, 'refix' expansion vessels relieve the connection line and the supply network. The use of these units must be agreed with the relevant water utility company. On the follow-up pressure side of a PBS, 'refix' vessels are installed to reduce the switch frequency, particularly in the case of cascade control systems. Installation on both sides of the PBS may also be necessary. Input pressure po The minimum operating pressure or input pressure po in the 'refix' vessel Initial pressure pa must be set approx. 0.5 ... 1 bar below the minimum supply pressure on the suction side and 0.5 ... 1 bar below the switch-on pressure on the pressure side of a PBS. Since the initial pressure pi is at least 0.5 bar higher than the input pressure, a sufficient water seal is always ensured; this is an important prerequisite for low-wear operation. In potable water systems according to DIN 1988, only water-carrying 'refix' vessels meeting the specifications of DIN 4807 T5 must be used. In the

case of non-potable water systems, 'refix' units with a single connection are

'refix' in hot water systems

Object:

Initial data

Tank volume Heating output	Vt Q	= liters = kW	
Water temperature in tank	tww	= °C	As per controller setting 5060°C \rightarrow p. 6 Percentage expansion n
Set pressure of pressure reducing val	vepi	= bar	
Safety valve setting	psv	= bar	Reflex recommendation: psv = 10 bar
Peak flow	Ůр	= m³/h	

v p p_{s\} V. гÅ ⊠

n

= %

Set input pressure 0.2...1 bar below pressure reducing valve (depending on distance between pressure reducing valve and 'refix')

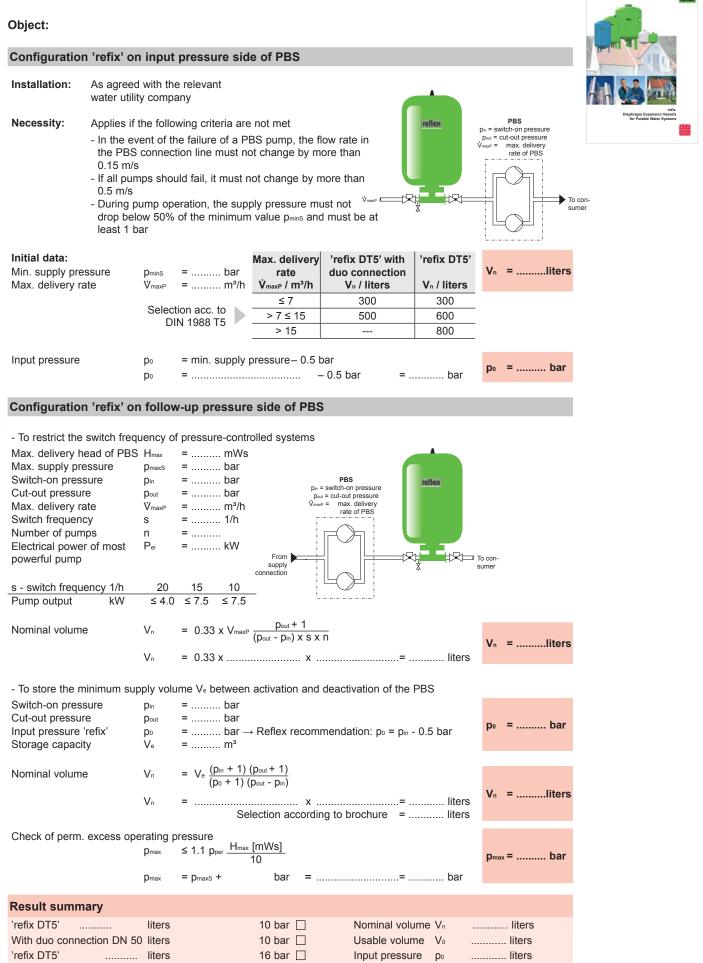
Selection according to nominal volume Vn

Input pressure	p ₀	= set p	ressure of pressure reducing valve p _i – (0.21.0 bar)	p₀ = bar
	p ₀	=	– = bar	
Nominal volume	Vn	= Vt	$\frac{n \ x \ (p_{\text{SV}} + 0.5)(p_0 + 1.2)}{100 \ x \ (p_0 + 1)(p_{\text{SV}} - p_0 - 0.7)}$	
	Vn	=	– = liters	V _n = liters
			Selection according to brochure = liters	

Selection according to peak volume flow $\dot{V_{\text{P}}}$

When the nominal volume of the 'refix' unit has been selected, it must be checked for water-carrying vessels whether the peak volume flow V_p resulting from the piping calculation according to DIN 1988 can be implemented on the 'refix'

unit. If this is the case, the 8-33 liter vessel of the 'refix DD' unit may have to be replaced with a a 60 liter 'refix DT5' vessel to enable a higher flow rate. Alternatively, a 'refix DD' unit with an appropriately dimensioned T-piece may be used.


		Recomm. max. peak flow V _₽ *	Actual pressure loss with volume flow V	
'flowjet'	'refix DD'8 -33 LiterWith or without 'flowjet'T-piece ductRp ¾ = standardT-pieceRp 1 (on-site)	≤ 2.5 m³/h ≤ 4.2 m³/h	$\Delta p = 0.03 \text{ bar} \left(\frac{\dot{V} [m^3/h]}{2.5 m^3/h} \right)^2$ negligible	∆p = bar
T-piece —	'refix DT5' 60 - 500 liters With 'flowjet' Rp 1 ¹ / ₄	≤ 7.2 m³/h	$\Delta p = 0.04 \text{ bar} \cdot \left(\frac{\dot{V} [m^3/h]}{7.2 m^3/h}\right)^2$	
	'refix DT5' 80 - 3000 liters Duo connection DN 50	≤ 15 m³/h	$\Delta p = 0.14 \text{ bar} \cdot \left(\frac{\dot{V} [m^3/h]}{15 m^3/h}\right)^2$	
	² Duo connection DN 65	≤ 27 m³/h	$\Delta p = 0.11 \text{ bar} \cdot \left(\frac{\dot{V} [m^3/h]}{27 m^3/h}\right)^2$	G =
Duo connection	Duo connection DN 80	≤ 36 m³/h	negligible	
	Duo connection DN 100	≤ 56 m³/h		
	'refix DE, DE junior' (non water-carrying)	Unlimited	∆p = 0	

* calculated for a speed of 2 m/s

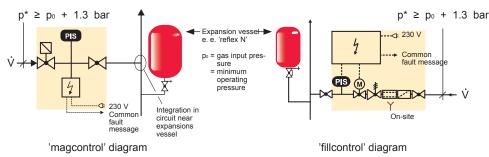
Result summary	,			
'refix DT5'		liters	Nominal volume Input pressure	V _n liters p₀ bar
'refix DD'		liters,	G = (standard Rp ¾ included)	
refix DT5'		liters		

26

'refix' in Pressure Booster Systems (PBS)

Make-up and degassing systems can automate system operation and make a significant contribution to operational reliability.

While 'variomat' pressurization stations are supplied with integrated makeup and degassing functions, additional units are required in the case of 'reflex' diaphragm expansion vessels as well as 'reflexomat' and 'gigamat' pressurization stations.


reflex 'control' make-up stations ensure that there is always sufficient water in the expansion vessel - an elementary prerequisite for system function They also meet the requirements of DIN EN 1717 and DIN 1988 for safe make-up from potable water systems.

reflex 'servitec' degassing stations can not only make up water, but they can also be used for central venting and degassing of systems. Our joint research with the Technical University of Dresden has underlined the essential nature of these functions, particularly in the case of closed systems. Measurements of supply water, for example, produced nitrogen concentrations between 25 and 45 mg/liter, which is 2.5 times higher than the natural concentration of potable water. \rightarrow p. 29

Water make-up systems

The system pressure is indicated on the display and monitored by the controller. If the pressure falls below the initial value p < p0 + 0.3 bar, controlled water make-up takes place. Faults are displayed and can be transferred via a signal contact. In the case of potable water make-up, a reflex 'magcontrol' system must be preceded by a reflex 'fillset' unit. A finished combination of both systems, with an integrated pressure reducing valve, is available in the form of reflex 'fillcontrol'.

The pressure immediately before the water make-up must be at least 1.3 bar higher than the input pressure of the expansion vessel. The make-up volume V can be determined on the basis of the kvs value.

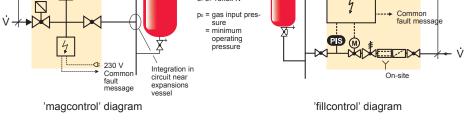
reflex 'fillset'

reflex 'fillcontrol

Make-up volume

V≈ √	p* - (p₀	+ 0.3)	x k _{vs}
------	----------	--------	-------------------

Setting values


p₀ = bar psv = bar

	Kvs
'fillcontrol'	0.4 m³/h
'magcontrol'	1.4 m³/h
'magcontrol' + 'fillset'	0.7 m³/h

* p = overpressure immediately before make-up station in bar

reflex 'control P'

reflex 'control P'

'control P' is a make-up station with a pump and open reservoir (system separation vessel) as a means of isolation from the potable water system according to DIN 1988 or DIN EN 1717.

'control P' is generally used when the fresh water supply pressure p is too low for direct make-up without a pump or when an intermediate vessel is required for separation from the potable water system.

The delivery rate is between 120 and 180 l/h at a max. delivery head of 8.5 bar.

reflex 'magcontrol

Degassing stations

oxygen injected into the system.

 \rightarrow 'reflex' calculation, page 9

 \rightarrow 'servitec' as per table below

Gas-rich, cloudy sample

Setting values p₀ = bar psv = bar

Traditional air separators are not required, thus saving installation and maintenance costs

'servitec' in 'levelcontrol' mode for 'reflexomat' and 'gigamat' pressurization stations

'servitec' in 'magcontrol'

mode for 'reflex' and other

expansion vessels

Make-up volume

high loads.

system.

System volume

The throughput volumes of the 'servitec' system depend on the pumps employed and the settings of the corresponding pressure reducing and overflow valves. In the case of standard systems with default factory configuration, the values in the table apply on a type-specific basis. The recommended max. system volumes are subject to the condition that partial flow degassing of the network volume takes place at least once every two

weeks. In our experience, this is sufficient even for networks with extremely

Note that 'servitec' can only be used within the specified operating pressure range - i.e. the specified operating pressures must be maintained at the 'servitec' integration point. In the case of deviating conditions, we recommend the use of special systems.

Degassing of water-/glycol mixtures is a more elaborate process, a fact that is underlined by the special technical equipment of the 'servitec' 60/gl

Туре	System volume V₅*	Make-up rate	Operating pressure
	For water up	to 70°C	
servitec 30	up to 8 m ³	up to 0.05 m ³ /h	0.5 to 3.0 bar
servitec 35	up to 60 m ³	up to 0.35 m ³ /h	1.3 to 2.5 bar
servitec 60	up to 100 m ³	up to 0.55 m ³ /h	1.3 to 4.5 bar
servitec 75	up to 100 m ³	up to 0.55 m ³ /h	1.3 to 5.4 bar
servitec 95	up to 100 m ³	up to 0.55 m ³ /h	1.3 to 7.2 bar
servitec 120	up to 100 m ³	up to 0.55 m ³ /h	1.3 to 9.0 bar
For	water/glycol mix	tures up to 70°C	
servitec 30 / gl	up to 2 m ³	up to 0.05 m³/h	0.5 to 2.5 bar
servitec 60 / gl	up to 20 m ³	up to 0.55 m³/h	1.3 to 4.5 bar
servitec 75 / gl	up to 20 m ³	up to 0.55 m ³ /h	1.3 to 4.9 bar
servitec 95 / gl	up to 20 m ³	up to 0.55 m ³ /h	1.3 to 6.7 bar
servitec 120 / gl	up to 20 m ³	up to 0.55 m³/h	1.3 to 9.0 bar

ing range of the pressure maintenance = pi to pf.

The operating pressure must be within the work-

reflex 'servitec'

* Vs = max. system volume with continuous degassing over 2 weeks

Make-Up and Degassing Stations

(🌈) +49 2382 7069-567

vessel of the pressurization station. For this purpose, a corresponding electrical signal (230 V) is required from this station. The pressure monitoring is either dispensed with or is performed by the pressurization station.

In most cases, a single sample in a glass vessel is sufficient to identify

excess gas accumulation in closed systems. Upon relaxation, the sample

The pressure is indicated on the display and monitored by the controller

(min/max fault message). If the pressure falls below the initial value ($p < p_0$ + 0.3 bar), the necessary checks are performed and degassed water made

up by means of leakage volume monitoring. This also enables refilling of

systems during manual operation. This helps to minimize the amount of

The additional cyclical degassing of the circulating water removes accumulating excess gases from the system. This central "deaeration" makes

The combination of 'servitec' and 'reflex' expansion vessels is technically equivalent to 'variomat' pressurization stations and represents a cost-effec-

The functionality is similar to that of 'servitec' in 'magcontrol' mode, except

that the water is made up on the basis of the water level in the expansion

circulation problems due to free gases a thing of the past.

tive alternative particularly in the sub-500 kW output range.

takes on a milky appearance due to the formation of micro-bubbles.

up io 'servitec' units for higher system volumes and temperatures up to 90°C are available on request.

From our joint research with the technical university of Dresden

Many heating systems suffer from "air problems". Intensive research in conjunction with the Energy Technology Institute of the Technical University of Dresden has shown that nitrogen is one of the main causes of circulation problems. Measurements on existing systems produced nitrogen concentrations between 25 and 50 mg/l, much higher than the natural concentration of potable water (18 mg/l). Our 'servitec' system rapidly reduces the concentration to near 0 mg/l.

Figure 1:'servitec' test system in a heat transfer stationof the Halle energy utilityHeat output:14.8MWWater content:approx. 100Return temperature : \leq 70°CReturn pressure:approx. 6bar

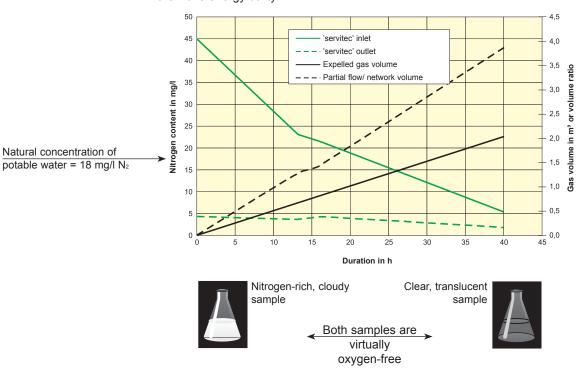


Figure 2: Nitrogen reduction using 'servitec' partial flow degassing in a test system of the Halle energy utility

▶ In 40 hours, 'servitec' reduced the N₂ content to almost 10% of the initial value, thereby eliminating 4 m³ of nitrogen. The air problems in the high-rise buildings were successfully eradicated

Water hardness

The need to protect heat generation systems (boilers and heat exchangers) from calcification is dictated, among other things, by the total water hardness of the filling and make-up water.

In this context, measurements are primarily based on VDI 2035, Part 1, as well as the specifications of the relevant manufacturers.

VDI 2035, Part 1: Requirements of filling and

Necessity: Due to the compact design of modern heat generators, the need to prevent calcification is ever growing. The current trend is for large heating outputs with small water volumes. VDI 2035, Part 1, was revised in December 2005 make-up water to address this matter in a more focused manner and provide recommendations for damage prevention.

 $Ca^{2+} + 2HCO_{3-} \rightarrow$

Calcification: The ideal location to implement necessary measures is in the filling and make-up line of the heating system. Appropriate systems for automatic $CaCO^3 + CO_2 + H_2O$ water make-up are simply to be added in line with requirements.

	Group	Total heating output	Total hardness [dGH] Based on spec. system volume v _s (system volume/lowest individual heating output)		Initial data Heat output Output-specific system volume	
			< 20 l/kW	≥ 20 l/kW and < 50 l/kW	≥ 50 l/kW	Output-specific heat gen- erator content
	1	< 50 kW	≤ 16.8 dGH for circulation heaters	≤ 11.2 dGH	< 0.11 dGH	
	2	50 - 200 kW	≤ 11.2 dGH	≤ 8.4 dGH	< 0.11 dGH	
	3	200 - 600 kW	≤ 8.4 dGH	≤ 0.11 dGH	< 0.11 dGH	Circulating water heaters or
	4	> 600 kW	< 0.11 dGH	< 0.11 dGH	< 0.11 dGH	devices with electric heating
Total heating output	This is t	ne total of all in	dividual heat gen	erator outputs.		elements v _b < 0.3 l/kW
Lowest individual heating output	This represents the smallest individual heating output of a single heat gen- erator forming part of a heat generator network.					
Output-specific system volume	This represents the entire water content of the system incl. heat generators relative to the smallest individual heating output.					

Output-specific boiler This is the specific value of the heat generator content relative to its heating volume output. The lower the value, the thicker the limescale deposits that can be expected in the case of calcification in the heat generator.

Regional total water In many cases, the most practical solution is to feed potable water from <a>February Fredex 'GH total hardness the public supply network into the systems as filling or make-up water. The hardness local lime content or regional water hardness can vary greatly, sometimes even fluctuating within the same region. The regional water hardness can be checked with the relevant water utility or established on-site by means of a test (reflex 'total hardness testing kit'). The relevant measures can then be derived on this basis. Water hardness is generally measured in dGH (degrees of general hardness). 1 dGH equates to 0.176 mol/m³, while 1 mol/m³ converts to 5.6 dGH.

testing kit' for independent measurement of local water hardness

Softening processes

There a number of methods for eliminating or disabling hard water minerals:

Cation exchangers With cation exchange, the calcium and magnesium ions in the filling water are replaced with sodium ions, while the calcium and magnesium is retained in the cation exchanger. This prevents the hard water minerals from entering the heating system. This procedure has no influence on the ph value of the filling water, and the permeability also remains unchanged.

In the cation exchanger, the filling and make-up water is simply passed over sodium ion-enriched plastic, after which the chemical ion exchange process is performed automatically.

Decarbonization With decarbonization, the hydrogen carbonate ions are removed or carbon dioxide is produced in conjunction with a hydrogen ion. The hardening cations in the magnesium and calcium are bound to the cation exchanger mass and thus removed. Due to the generated carbon dioxide, the ph value of the water is changed and the salt content reduced. A base exchanger is then added to compensate for this.

Decarbonization works on the basis of the ion exchange principle and is used wherever a definite need exists to reduce the salt content of the water (e.g. steam generators).

- **Desalination** As the name suggests, desalination involves the removal of parts of the salt-forming anions and cations. In the case of full desalination, all these ions are effectively removed (demineralized water). There are two main methods used for desalination. On the one hand, the ion exchange process is again employed, in this case in a mixed bed exchanger. The other method is reverse osmosis, in which the salts are removed from the water by means of a diaphragm. This procedure is both technically demanding and highly energy-intensive and more suited to large water volumes. When using demineralized water, a ph adjustment function must be implemented in the system.
- Hardness stabilization Hardness stabilization is a water treatment that influences the calcium precipitation to the point that no scale formation occurs. Two specific procedures are employed. The first involves the addition of polyphosphate, thus suppressing the calcification though not fully eliminating it. Slurry formation can occur (calcium precipitation in the water) as the carbonate ion concentration is not reduced. This procedure requires chemical understanding, monitoring and regularity. The other procedure to be included under the general heading of physical water treatment involves the formation of stabilizing crystal seeds, e.g using magnetic fields, thus avoiding the need for chemicals or chemical processes. The effectiveness of the latter solution remains a matter of great dispute.

Practical water softening

For heating systems in the low to medium output range, cation exchangers are the ideal means of preventing calcification in heat generators. This cost-effective solution is simple to implement and best suits the specific requirements.

Water softening with Using the appropriate reflex 'fillsoft' cation exchanger, fully or partially cation exchangers in the demineralized water can be produced to exact requirements. filling and make-up line

Filling and make-up This term from VDI 2035, Part 1, represents the water and specific volume water that is required to completely refill a system or must be added during operation.

Soft water This is water that has been completely freed of the hard water minerals calcium and magnesium thus eliminating the possibility of calcification. A specific value for the amount of soft water that a softening system can produce is the soft water capacity K_w [I*dGH]. The filling and make-up water is not always to be fully demineralized, nor does it always have to be. Water that has not been completely freed of hardening minerals is also referred to as partially demineralized water.

Туре	Soft water capacity Kw [I* dGH]	k vs [m³/h]	V॑ _{max} [l/h]
'fillsoft I'	6,000	0.4	300
'fillsoft II'	12,000	0.4	300

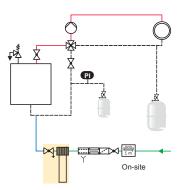
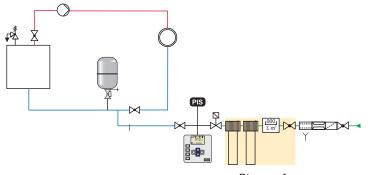



Diagram for 'fillsoft I' +'fillset compact'

partially demineralized water

reflex 'fillmeter' monitors the capacity of 'fillsoft'

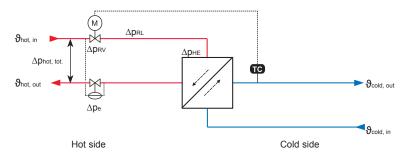
Soften your water with the reflex 'fillsoft' cation exchanger

Diagram for 'magcontrol' + 'fillsoft II' + 'fillmeter' + 'fillset compact'

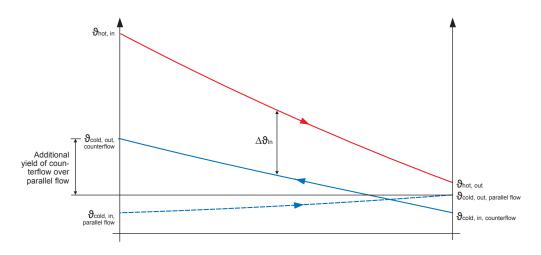
reflex 'fillsoft'

Object:

Initial data		- 88 mm
Heat generator Heat output Water content		Qtot = kW Qmin = kW
Water content known	$ V_s = \mbox{ liters} \rightarrow p. \ 6 \ \ \mbox{ Approximate water content} \\ v_s = f \ (t_F, \ t_R, \ \dot{Q}_{tot}) \ \ \ V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	/s = liters ▶ Q̇ _{min} = lowest value
Specific values		of Qb
Output-specific boiler water content	$v_{b} = \frac{V_{c}}{\dot{Q}_{b}} = = I / kW$ $v_{s} = \frac{V_{s}}{\dot{Q}_{min}} = = I / kW$	Checks whether the unit is a circulating
Output-specific system content	$v_s = \frac{V_s}{Q_{min}} = = \dots I / KW$	water heater (< 0.3 l/kW)
Water hardness		
Regional total water hardness	GH_{act} = dGH measurement \rightarrow p. 30 d	GH _{att} = GH Water softening is required when
Target total water hardness	$GH_t = \dots dGH \xrightarrow{\rightarrow} table on p.30 or details from relevant manufacturer G$	GH _{act} > GHt
'fillsoft II'	Kw = 6,000 I * dGH Kw = 12,000 I * dGH Kw = 6,000 I * dGH/unit	w =I*dGH
Possible filling and make-u	p water volumes	
Poss ble filling water volume (mixed)	$V_{F} = \frac{K_{W}}{(GH_{act} - GH_{t})} = For GH_{act} > GH_{t}$	/F = liters
Possible make-up water volume	$V_m = \frac{K_w}{(GH_{act} - 0.11 \text{ dGH})}$ For $GH_{act} > 0.11 \text{ dGH}$ =	/m = liters
No. of cartridges required to fill system	n = $\frac{V_s (GH_{act} - GH_t)}{K_W}$ = n	¹⁾ = liters ¹⁾ Round cartridge no. n up to the nearest whole number
Poss ble residual make-up volume after filling	$V_{m} = \frac{n * 6,000 dGH - (V_{s} * (GH_{act} - GH_{t}))}{(GH_{act} - 0.11 dGH)} \text{ for } GH_{act} > 0.11$ $=$	/m = liters
Result summary		
'fillsoft' T 'FP replacement cartridge' C 'softmix' T 'fillmeter' T 'GH hardness testing kit' C	Quantity Possible filling water volume (partially/fully demineralized Yes No Yes No Yes No Possible residual make-up volume (fully demineralized Possible residual make-up volume (par ially demineralized) <mark>liters</mark>



33



Heat exchangers

- **Heat balances** The role of a heat exchanger is to transfer a specific heat quantity from the hot to the cold side. The transfer capacity is not only device-specific but also dependent on the required temperatures. As a result, we do not speak of ... kW heat exchangers, but rather that a device can transfer ... kW with the specified heat spreads.
- **Applications** As a means of system separation for media that must not be mixed, e.g. Heating and potable water
 - Heating and solar energy system water
 - Water and oil circuits
 - To separate circuits with different operating parameters, e.g.
 - Excess operating pressure on side 1 exceeds permissible excess operating pressure on side 2
 - Water volume of side 1 is significantly higher than that of side 2
 - · To minimize interference between the two circuits

Counterflow As a rule, heat exchangers should always be connected on the basis of the counterflow principle as only this will ensure that they can deliver their full capacity. In the case of parallel flow connections, significant performance losses can be expected.

- Hot and cold side The allocation of the two system circuits as the primary and secondary side varies by individual application. In the case of heating systems, the hot side is usually described as the primary side, whereas the cold side is the primary side in cooling and refrigerating systems. The differentiation between hot and cold sides is both clearer and non-application-specific.
 - **Inlet/outlet** When configuring heat exchangers, problems are often encountered with the terms "advance" and "return" as the calculation software requires accurate designation of the inlet and outlet. A clear distinction must be made between the hot heating advance on the outlet side of the heat exchanger and the inlet into the plate heat exchanger delivered from the heating system in a cooled state. In the Reflex calculation software, "inlet" always refers to the supply to the plate heat exchanger, while the "outlet" is defined correspondingly.

- Example applications:
 Indirect district heating
 - connections
 - Floor heating
 - Potable water heating
 - Solar energy systems
 - Machine cooling

Thermal length The performance or operating characteristic of a plate heat exchanger describes the ratio between the actual cooling on the hot side and the theoretical maximum cooling to inlet temperature on the cold side.

$$\label{eq:operating characteristic} Operating characteristic = \Phi \frac{\vartheta_{\text{hot, in}} - \vartheta_{\text{hot, out}}}{\vartheta_{\text{hot, in}} - \vartheta_{\text{cold, in}}} < 1$$

The term "thermal length" is often used as a qualitative description of the heat exchanger's performance. This is a device-specific property that depends on the structure of the heat exchanger plates. Increased profiling and narrower channels raise the flow turbulence between the plates. The "thermal length" of the device is increased thus raising its performance and allowing it to better align the temperatures of both media.

Log mean temperature
differenceA measure of the driving force of the heat transfer is the temperature difference
between the hot and cold medium. Since this constitutes a non-linear transition,
the driving force is linearized under the term "log mean temperature difference
 $\Delta \vartheta_n$ ".

$$\Delta \vartheta_{\text{in}} = \frac{(\vartheta_{\text{hot, out}} - \vartheta_{\text{cold, in}}) - (\vartheta_{\text{hot, in}} - \vartheta_{\text{cold, out}})}{\ln \frac{(\vartheta_{\text{hot, out}} - \vartheta_{\text{cold, in}})}{(\vartheta_{\text{hot, in}} - \vartheta_{\text{cold, out}})}}$$

The lower this driving temperature difference, the greater the surface area to be provided; this can result in very large systems for cold water networks in particular.

Terminal temperature difference difference difference interminal temperature difference interminal temperature difference interminal temperature difference interminal temperature difference difference

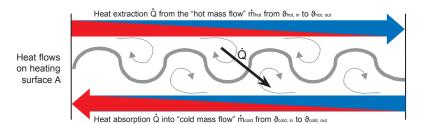
Terminal temperature difference = $\vartheta_{hot, out} - \vartheta_{cold, in}$

- **Pressure losses** An important criterion for the configuration of heat exchangers is the permissible pressure loss. Similarly to the terminal temperature difference, a very low pressure loss is generally only possible with very large heat exchangers. In such cases, increasing the temperature spread can help to reduce the volume flow to be circulated and thus also the pressure loss experienced by the heat exchanger. If a higher pressure loss is available in a system, e.g. in the case of district heating networks, it may be expedient to permit a slightly higher pressure loss in order to significantly reduce the size of the system.
- **Flow properties** The size of a heat exchanger is also greatly dictated by the flow properties of the media. The greater the turbulence with which the heat transfer media pass through the system, the higher not only the transferable output but also the pressure losses. This interrelation between output, system size and flow properties is described by the heat transfer coefficient.
- **Surface reserve** To determine the size of a heat exchanger, the first step is to establish the required transfer area on the basis of the boundary conditions. When applying a maximum pressure loss, for example, this can result in devices with a significant excess surface area. This surface reserve is a theoretical value. When operating the plate exchanger, the temperatures of the two heat transfer media are aligned to the point that the excess surface area no longer exists. In a heating circuit, the target temperature is generally specified via the regulator. A theoretical surface reserve is removed by reducing the heating mass flow via the regulator. The temperature on the outlet side of the hot medium is thus reduced correspondingly. When sizing the control fittings, the reduced mass flow must be taken into account to avoid overdesigning.

Physical principles

Heat balances Heat emission and absorption of heat transfer media

 $\dot{\mathbf{Q}} = \dot{\mathbf{m}} \mathbf{x} \mathbf{c} \mathbf{x} (\vartheta_{\text{iv}} - \vartheta_{\text{out}})$


Based on the specified temperature spread and the circulated mass, the above formula can be used to calculate the capacity to be transferred.

Heat transport via heat exchanger plates

 $\dot{\mathbf{Q}} = \mathbf{k} \mathbf{x} \mathbf{A} \mathbf{x} \Delta \vartheta_{\lambda v}$

The heat transfer coefficient k [W/m²K] is a medium- and device-specific variable comprising the flow properties, nature of the transfer surface and type of the heat transfer media. The more turbulent the flow, the higher the pressure loss and thus also the heat transfer coefficient. The log mean temperature difference $\Delta \vartheta_m$ is a pure system variable resulting from the established temperatures.

Using a complicated calculation algorithm, the heat transfer coefficient is first established on the basis of the boundary conditions, after which the necessary system size is determined on the basis of the required transfer surface area.

- Initial data The following values must be known to be able to configure a heat exchanger:
 - Type of media (e.g. water, water/glycol mixture, oil)
 - Properties of any media other than water (e.g. concentrations, density, heat conductivity and capacity, viscosity)
 - Inlet temperatures and required outlet temperatures
 - Capacity to be transferred
 - Permitted pressure losses

If the systems are operated under very different (e.g. seasonal) conditions, as in the case of district heating networks for instance, the heat exchangers must also be configured to suit these conditions.

Calculation program Optimum configuration of reflex 'longtherm' heat exchangers is ensured by our Reflex calculation program, which is supplied on our DVD or available for download at www.reflex.de. Your specialist advisor will also be happy to help you devise individual solutions.

▶ Your specialist adviser $\bigcirc \rightarrow p.55$

System equipment

Safety technology	 Applicable standards for the safety equipment of heat exchangers as indirect heat generators include: DIN 4747 for district heating substations DIN EN 12828 for water heating systems; see section "Safety technology" on p.40 et seqq. DIN 1988 and DIN 4753 potable water heating systems 	
	The following information on system equipment is to support you with your system configuration and help to avoid frequent problems with system operation and device failures during the planning phase.	
Regulating valve	The configuration of the regulating valve is of utmost importance to the stable operation of a heat exchanger. It should not be oversized and must ensure stable regulation even under low loads.	
	One particular selection criterion is the valve authority. It describes the ratio between the pressure losses with a fully opened regulating valve and the maximum available pressure loss with the valve closed. If the valve authority is too low, the regulating effect of the valve is insufficient.	
	Valve authority = $\frac{\Delta p_{\text{RV}} (100\% \text{ stroke})}{\Delta p_{\text{hot, tot.}}} \ge 3040\%$ (see also page 30)	
	Once the pressure loss via the regulating valve has been determined, the k _{vs} value can be established. It must be based on the actual mass flow of the circuit to be regulated. $k_{vs} \ge k_v = \dot{V}hot \sqrt{\frac{1 \text{ bar}}{\Delta p_{RV}}} = \frac{\dot{m}_{hot}}{\rho_{hot}} \sqrt{\frac{1 \text{ bar}}{\Delta p_{RV}}}$	
	The k _{vs} value of the selected regulating valve should not be significantly higher than the calculated value (do not use safety margins!). Otherwise, there is a risk of system instability and frequent switching, particularly under weak or partial loads, and this is one of the most frequent failure causes of plate heat exchangers.	Regula must ne oversiz
Temperature sensor Temperature regulator	The temperature sensors must be fast and virtually inertia-free and must always be fitted in the immediate vicinity of the plate heat exchanger outlet to ensure quick- est possible actuation of the regulation to respond to changing conditions or vari- ables. If slow sensors and regulators are used and situated far from the plate heat exchanger, there is a risk of periodic overshooting of the set point value tempera-	

fitted in the immediate vicinity of the plate heat exchanger outlet to ensure quickest possible actuation of the regulation to respond to changing conditions or variables. If slow sensors and regulators are used and situated far from the plate heat exchanger, there is a risk of periodic overshooting of the set point value temperatures and, consequently, frequent switching of the controls. Such instable control behavior can result in the failure of the plate heat exchanger. If additional control circuits are connected downstream of the heat exchanger control circuit, e.g. for secondary heating circuit regulation, they must communicate with one another.

Caution! Great care must be taken when selecting regulators and regulating valves. An incorrect configuration can result in unstable operation, which in turn leads to excessive dynamic stress on materials.

lating valve

37

must not be oversized

Within the meaning of the guidelines and regulations, equipment is defined as all pieces of equipment that are required for operation and safety, such as connection lines, fittings and control devices.

Safety equipment is defined in standards. The main pieces of equipment are described below. Pages 40-43 provide an overview of heat generation systems with operating temperatures up to 105°C according to DIN EN 12828 and hot water systems according to DIN 4753. A key can be found on page 49.

Safety valves (SV)

Safety valves protect heat (cold) generators, expansion vessels and the entire system against impermissible excess pressures. When configuring safety valves, potential loading conditions (e.g. heat supply in the case of shut off heat generators, pressure increases caused by pumps) must be taken into account.

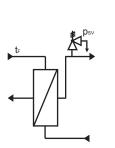
Hot water generators DIN EN 12828: 'All heat generators in a heating system must be protected by at least one safety valve in order to prevent the maximum operating pressure from being exceeded.' To ensure that they can discharge safely and adequately, safety valves on directly heated heat generators must be configured for saturated steam in relation to the nominal heat output Q. In heat generators with an output of over 300 kW, an expansion trap should be connected for the phase separation of steam and water. In the case of indirectly heated heat generators (heat exchangers), sizing for water outflow is possible if the emission of steam is excluded by the temperature and pressure conditions. Based on experience, dimensioning can be performed on the basis of a fluid outflow of 1 I/(hkW).

According to DIN EN 12828, when using more than one safety valve, the smaller one must be configured for at least 40% of the total discharge volume flow.

The technical specifications below are based on the rules already applied The European standards to be applied in the future, e.g. EN ISO 4126-1 for safety valves, had not been accepted at the time of printing of this brochure. For the time being, we will therefore focus solely on the use of currently available and commonplace valves and their calculation criteria. As safety-relevant components, all valves must bear a CE mark in accordance with the Pressure Equipment Directive 97/23/EC (DRGL) and should be type tested. The descriptions of safety valves below relate to valves that are currently available on the market. In the medium term, valves will be rated and identified according to DIN ISO 412, and dimensioning will have to be carried out accordingly.

- SV code letter H These safety valves are known generally as "diaphragm safety valves" with response pressures of 2.5 and 3.0 bar. In accordance with TRD 721, in Germany H valves can be used up to a maximum response pressure of 3 bar. The performance is defined independently of the brand. For the purposes of simplification, the blow-off steam and water are equated, irrespective of the response pressure (2.5 or 3.0 bar).
- SV code letter D/G/H If the response pressures deviate from 2.5 and 3.0 bar or if an output of 900 kW is exceeded, D/G/H safety valves are used. The blow-off rates are specified for each specific brand in accordance with the allocated outflow numbers.
- Hot water systems In hot water systems according to DIN 4753, only safety valves with the code letter W are permitted. In some cases, combined valves W/F (F fluids) are offered. The performance values are defined in TRD 721.
- **Solar energy systems** Solar energy systems according to VDI 6002 are to be fitted with H or D/G/H safety valves, while intrinsically safe systems should also be fitted with F safety valves (outflow for fluids only). Solar energy systems that are calculated according the specifications in this documentation are deemed intrinsically safe.
- **Cooling water systems** For cooling water systems in which evaporation can be excluded, F safety valves can be used according to the manufacturer. The loading conditions must be calculated specifically.
 - **Expansion vessels** If the permissible excess operating pressure of expansion vessels is below the permissible operating pressure of the system, intrinsic safeguarding is required. The loading conditions must be calculated specifically. Suitable valves are H, D/G/H and safety valves according to the AD data sheet A2 (e.g. F). Although Reflex expansion vessels for pump-controlled pressurization systems are depressurized in normal operation, pressurization can be expected in the event of incorrect operation. They are therefore protected with F valves via the control unit. At blow-off pressure (5 bar) the maximum possible volume flow is to be discharged. This generally works out as 1 l/(hkW) relative to the connected overall heat output.

The Reflex product range does not include safety valves


Safety valves on heat generators according to DIN EN 12828, TRD 721***

Code letter H, blow-off pressure psv 2.5 and 3.0 bar

Inlet connection [G] - outlet connection [G]	1/2 - 3/4	³ ⁄4 - 1	1 - 1¼	1¼ - 1½	1½ - 2	2 - 21/2
Blow-off rate for steam and water/kW	≤ 50	≤ 100	≤ 200	≤ 350	≤ 600	≤ 900

Code letter D/G/H, e.g. LESER, type 440*

DN1/DN2	20x32	25x40	32x50	40x65	50x80	65x100	80x125	100x150	125x200	150x250	20x32	25x40
pSV/bar			S	Steam o	utflow	-	— BI	ow-off ra	ate/kW		- Water	outflow
2.5	198	323	514	835	1291	2199	3342	5165	5861	9484	9200	15100
3.0	225	367	583	948	1466	2493	3793	5864	6654	10824	10200	16600
3.5	252	411	652	1061	1640	2790	4245	6662	7446	12112	11000	17900
4.0	276	451	717	1166	1803	3067	4667	7213	8185	13315	11800	19200
4.5	302	492	782	1272	1966	3344	5088	7865	8924	14518	12500	20200
5.0	326	533	847	1377	2129	3621	5510	8516	9663	15720	13200	21500
5.5	352	574	912	1482	2292	3898	5931	9168	10403	16923	13800	22500
6.0	375	612	972	1580	2443	4156	6322	9773	11089	18040	14400	23500
7.0	423	690	1097	1783	2757	4690	7135	11029	12514	20359	15800	25400
8.0	471	769	1222	1987	3071	5224	7948	12286	13941	22679	16700	27200
9.0	519	847	1346	2190	3385	5759	8761	13542	15366	24998	17700	28800
10.0	563	920	1462	2378	3676	6253	9514	14705	16686	27146	18600	30400

Max. primary flow temperature t_F to prevent evaporation at psv

psv / bar	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	7.0	8.0	9.0	10.0
t _v / °C	≤ 138	≤ 143	≤ 147	≤ 151	≤ 155	≤ 158	≤ 161	≤ 164	≤ 170	≤ 175	≤ 179	≤ 184

Safety valves on water heaters according to DIN 4753 and TRD 721

Code letter W, blow-off pressure psv 6, 8, 10 bar, e.g. SYR, type 2115*

Inlet connection G	Tank volume liters	Max. heating capacity kW
1/2	≤ 200	75
3/4	> 200 ≤ 1000	150
1	> 1000 ≤ 5000	250
1¼	> 5000	30000

Safety valves in solar energy systems according to VDI 6002, DIN 12976/77, TRD 721

Code letter H, D/G/H, F (intrinsically safe systems)

Inlet port	DN	15	20	25	32	40	
Collector inlet surface	m²	≤ 50	≤ 100	≤ 200	≤ 350	≤ 600	

Safety valves in cooling systems and on expansion vessels

Code letter F (only with guaranteed fluid outflow), e.g. SYR, type 2115*

Inlet connection	1/2	3⁄4	1	1¼	11⁄2	2
psv / bar			Blow-off	rate / m ³ /	h	
4.0	2.8	3.0	9.5	14.3	19.2	27.7
4.5	3.0	3.2	10.1	15.1	20.4	29.3
5.0	3.1**	3.4	10,6**	16.0	21.5	30.9
5.5	3.3	3.6	11.1	16.1	22.5	32.4
6.0	3.4	3.7	11.6	17.5	41.2	50.9

* Contact the manufacturer for up-to-date values

** Protection of Reflex expansion vessels in pressurization systems
 Vessels up to1000 liters, Ø 740 mm, G ½ = 3100 kW = 3100 l/h
 as of1000 liters, Ø 1000 mm, G 1 = 10600 kW = 10600 l/h

*** If safety valves according to DIN ISO 4126 are used, an appropriate calculation base must be applied.

When making a selection, the systemspecific conditions should be compared with the manufacturer specifications for the valves (e.g. temperature load).

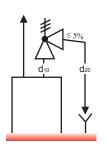
The water outflow

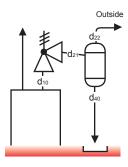
table can be applied for **heat exchangers** provided that the

conditions opposite

39

are met.




Exhaust lines from safety valves, expansion traps

Exhaust lines must meet the conditions of DIN EN 12828, TRD 721 and – in the case of solar energy systems – VDI 6002. In accordance with DIN EN 12828, safety valves are to be fitted in such a way that the pressure loss in the connection line to the heat generator does not exceed 3% of the nominal pressure of the safety valve and the pressure loss in the blow-off line does not exceed 10% of the nominal pressure of the safety valve. On the basis of the withdrawn standard DIN 4751 T2, these requirements have been compiled in a number of tables for simplification purposes. Mathematical verification may be required in individual cases.

Expansion traps Expansion traps are installed in the exhaust lines of safety valves as a means of phase separation of steam and water. A water discharge line must be connected at the lowest point of the expansion trap, which discharges heating water in a safe and observable manner. The steam exhaust line must be routed from the high point of the expansion trap to the outside.

Necessity In accordance with DIN EN 12828 for heat generators with a nominal heat output of > 300 kW. In the case of indirectly heated heat generators (heat exchangers), expansion traps are not required if the safety valves can be dimensioned for water outflow, i.e. if there is no risk of steam formation on the secondary side.

 \rightarrow Safety valves on heat generators, see page 35

Exhaust lines and reflex 'T expansion traps' in systems according to DIN EN 12828

Safety valves with code letter H, blow-off pressure p_{SV} 2.5 and 3.0 bar

0	alety	vaive	es with code letter	11, 010	w-on pre	essure p	sv z. J c	anu 5.0	Jai								
				SV wi	thout 'T sion tra			th or wit					SV wi	th 'T ex	pansior	n trap'	
	Saf val		Nominal output of heat generator	E	chaust	line	S	SV supp	bly		S	V – T li	ne	E>	haust	line	Water dis- charge line
	d ₁	d ₂	Q	d 20	Length	No. of	d 10	Length	No. of	Type	d 21	Length	No. of	d 22*	Length	No. of	d40*
	DN	DN	kW	DN	m	bends	DN	m	bends	T	DN	m	bends	DN	m	bends	DN
	15	20	≤ 50	20	≤ 2	≤ 2	15	≤1	≤1								
	15	20	50 ≤	25	≤ 4	≤ 3	15	51	51								
	20	0.5	< 100	25	≤ 2	≤ 2	20	≤ 1	≤1			1					
	20	25	≤ 100	32	≤ 4	≤ 3	20	51	51								
	25	32	≤ 200	32	≤ 2	≤ 2	25	≤ 1	≤1			1					
	25	32	≥ 200	40	≤ 4	≤ 3	25		<u> </u>								
	32	40	≤ 350	40	≤ 2	≤ 2	32	≤1	≤ 1	270	65	≤ 5	≤2	80	≤ 15	≤ 3	65
	32	40	≥ 350	50	≤ 4	≤ 3	32		<u> </u>	270	60	> 2	> 2	00	≥ 15	> >	co
	40	50	≤ 600	50	≤ 2	≤ 4	40	≤1	≤1	380	80	≤ 5	≤2	100	≤ 15	≤ 3	80
	40	50	≥ 000	65	≤ 4	≤ 3	40	-	21	380	80	> 0	≥ Z	100	2 15	20	00
	50	65	≤ 900	65	≤ 2	≤ 4	50	≤1	≤1	480	100	≤ 5	≤2	125	≤	≤ 3	100
	50	05	≥ 900	80	≤ 4	≤ 3	50	-	21	400	100	> 0	≥ Z	125	<u> </u>	20	100

Safety valves with code letter D/G/H, blow-off pressure $p_{sv} \le 10$ bar

		SV wi	thout 'T sion tra	expan-			ith or wit pansion						SV wit	h 'T ex	pansior	n trap'	
	fety Ive	E	khaust	line		5	SV supp	oly			S	SV – T li	ine	E	khaust	line	Water dis- charge line
d1	d 2	d 20	Length	No. of	Blow.press.	d 10	Length	No. of	Туре	Blow.press.	d 21	Length	No. of	d 22*	Length	No. of	d ₄₀ *
DN	DN	DN	m	bends	bar	DN	m	bends	Т	bar	DN	m	bends	DN	m	bends	DN
25	40	40	≤ 5.0	≤ 2	≤ 5	25	≤ 0.2	≤ 1	170	≤ 5	40	≤ 5.0	≤2	50	≤ 10	≤ 3	50
25	40	50	≤ 7.5	≤ 3	> 5 ≤ 10	32	≤ 1.0	≤ 1	170	> 5 ≤ 10	50	≤ 7.5	≤2	65	≤ 10	≤ 3	65
32	50	50	≤ 5.0	≤ 2	≤ 5	32	≤ 0.2	≤ 1	170	≤ 5	50	≤ 5.0	≤2	65	≤ 10	≤ 3	65
32	50	65	≤ 7.5	≤ 3	> 5 ≤ 10	40	≤ 1.0	≤ 1	270	> 5 ≤ 10	65	≤ 7.5	≤2	80	≤ 10	≤ 3	80
40	65	65	≤ 5.0	≤2	≤ 5	40	≤ 0.2	≤ 1	270	≤ 5	65	≤ 5.0	≤2	80	≤ 10	≤ 3	80
40	05	80	≤ 7.5	≤ 3	> 5 ≤ 10	50	≤ 1.0	≤ 1	380	> 5 ≤ 10	80	≤ 7.5	≤2	100	≤ 10	≤ 3	100
50	80	80	≤ 5.0	≤ 2	≤ 5	50	≤ 0.2	≤ 1	380	≤ 5	80	≤ 5.0	≤2	100	≤ 10	≤ 3	100
50	00	100	≤ 7.5	≤ 3	> 5 ≤ 10	65	≤ 1.0	≤ 1	480	> 5 ≤ 10	100	≤ 7.5	≤2	125	≤ 10	≤ 3	125
65	100	100	≤ 5.0	≤2	≤ 5	65	≤ 0.2	≤ 1	480	≤ 5	100	≤ 5.0	≤2	125	≤ 10	≤ 3	125
05	100	125	≤ 7.5	≤ 3	> 5 ≤ 10	80	≤ 1.0	≤1	480	> 5 ≤ 10	125	≤ 7.5	≤2	150	≤ 10	≤ 3	150
80	125	125	≤ 5.0	≤2	≤ 5	80	≤ 0.2	≤ 1	480	≤ 5	125	≤ 5.0	≤2	150	≤ 10	≤ 3	150
80	125	150	≤ 7.5	≤ 3	> 5 ≤ 10	100	≤ 1.0	≤1	550	> 5 ≤ 10	150	≤ 7.5	≤2	200	≤ 10	≤ 3	200
100	150	150	≤ 5.0	≤2	≤ 5	100	≤ 0.2	≤1	550	≤ 5	150	≤ 5.0	≤2	200	≤ 10	≤ 3	200

* When combining several lines, the cross-section of the collecting main must be at least the same as the sum of the cross-sections of the individual lines.

Pressure limiters

Pressure limiters are electromechanical switchgears, and according to the Pressure Equipment Directive 97/23/EC (DGRL) are defined as pieces of equipment that perform a safety function. As such, the limiters used must bear a CE mark and should undergo component testing. If the pressure is exceeded or falls too low, the heating system is immediately switched off and locked.

The Reflex product range does not include pressure limiters

limiters

Maximum pressure DIN EN 12828: "All heat generators with a nominal heat output of PLmax more than 300 kW must be fitted with a safety pressure limiter."

PLmax

As a general rule, pressure limiters are set 0.2 bar below the safety valve actuation pressure.

Pressure limiters are not required for heat exchangers (indirect heating).

Minimum pressure DIN EN 12828, the standard for systems with operating temperatures limiters PL_{min} ≤ 105°C does not require a minimum pressure limiter in all cases. It is \mathbf{PL}_{min} only required as a replacement measure for the water level limiter on directly heated heat generators.

> A minimum pressure limiter can also be used to monitor function in systems with pressurization systems that are not supported by an automatic makeup system.

Expansion lines, shut-off, draining

DIN EN 12828: "Expansion lines must be dimensioned such that their flow Expansion lines Heat generators up to resistance Δp can only bring about a pressure increase to which the pressure 120°C limiters (PLmax) and safety valves (psv) do not respond."

> The base volume flow to be applied is 1 liter/(hkW) relative to the nominal heat output of the heat generator Q.

> In the case of suction pressure maintenance, the permissible pressure loss Δp results mainly from the difference between the safety valve actuation pressure psv or set pressure of the pressure limiter PLmax and the final pressure pf minus a specific tolerance. The pressure loss is mathematically verified by the following relationship:

 $\Delta p (1 \text{ liter/(hkW)}) = \Sigma (\text{RI} + \text{Z}).$

Verification is not necessary if the following table values are used. In the case of 'variomat' pressurization stations, the expansion lines are also dimensioned according to the degassing performance. → reflex 'variomat' brochure

Expansion line	DN 20 3⁄4"	DN 25 1"	DN 32 1¼"	DN 40 1½"	DN 50 2"	DN 65	DN 80	DN 100
Ż/kW Length≤10 m	350	2100	3600	4800	7500	14000	19000	29000
Ż/kW Length>10 m ≤ 30 m	350	1400	2500	3200	5000	9500	13000	20000

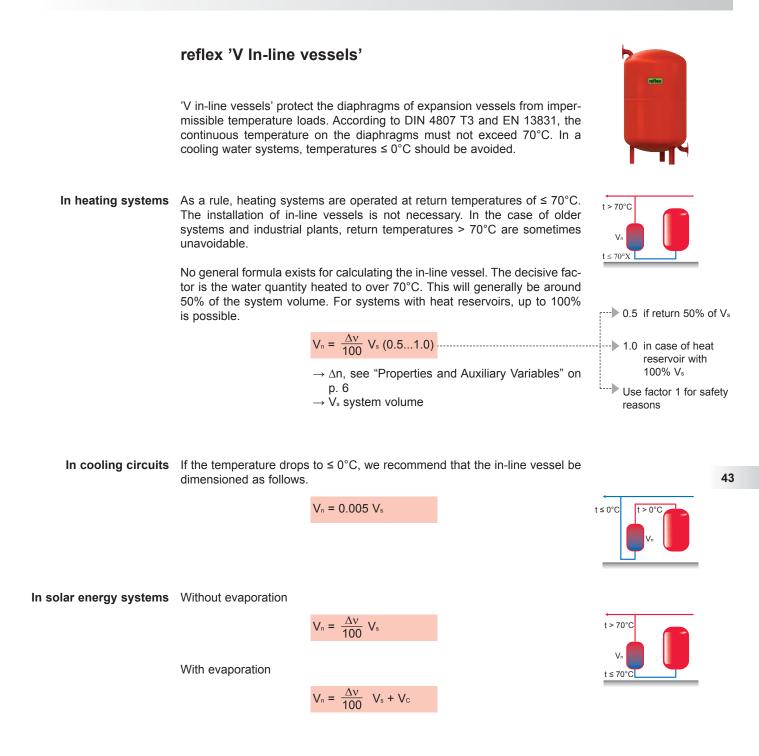
Incidentally, it is both permissible and common for expansion lines on expansion vessel or pressurization station connections to be "contracted" to smaller dimensions.

Potable water In hot water and pressure booster systems, the connection lines for water-carinstallations rying vessels are determined on the basis of the peak volume flow V_P as per the specifications of DIN 1988 T3. For 'refix DT5' from 80 liters, the bypass lines for repair purposes (closed during operation) should generally be one dimension smaller than the main line. 'refix DT5' units with flow fittings are pre-equipped with an integrated bypass (open during operation). Special calculations are required when using 'refix' units for pressure surge damping.

Shut-offs To be able to perform maintenance and inspection work in a correct and professional manner, the water spaces of expansion vessels must be configured such Draining that they can be shut off from those of the heating/cooling system. The same applies for expansion vessels in potable water systems. This facilitates (and, in some cases, enables) the annual inspection of the pressurization system (e.g. gas input pressure check on expansion vessels).

> In accordance with DIN EN 12828, cap ball valves with socket fittings as well as integrated drainage and quick couplings are provided; these components are subject to minimal pressure loss and are protected against inadvertent closing.

In the case of 'refix DT5' 60-500 liters, a 'flowjet' flow fitting Rp 11/4 is supplied 'refix DT5' with for on-site installation, which combines the shut-off function, draining and bypass in a single unit.


For 'refix DD' 8-33 liters, our 'flowjet' flow fitting Rp 3/4 with protected shut-off and draining is available as an optional accessory. The T-piece for the water flow is supplied with the 'refix DD' unit, in this case in Rp 3/4 format. Larger T-pieces must be provided by the customer.

In the case of 'refix DT5' 80-3000 liters, the required fittings must be procured by the customer. In this case we recommend that the supplied fittings be used for installation.

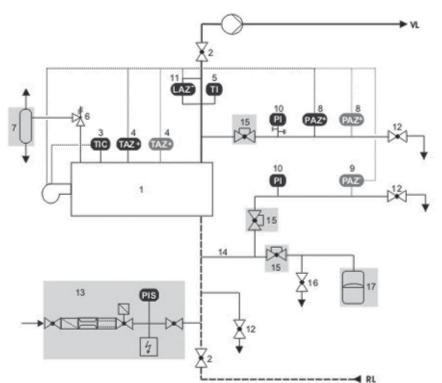
with T-piece

flow fitting

	Direct heating (heated with oil, gas, coal or electric energy)	ating al or electric energy)	Indirect heating (heat generators heated with liquids or steam)	heating d with liquids or steam)
Temperature protection				
Temperature measuring device	The	ermometer, display range ³ 12	Thermometer, display range ³ 120% of max. operating temperature	erature
Safety temperature limiter, or monitor, acc. to EN 60730-2-9	STL Temperature overshoot max. 10 K	L shoot max. 10 K	STL with tra > tase (psv), STL not required if p perature ≤ 105°C or use of STM if tra > t _{smax}	STL with t_{PR} > t_{dsec} (psv), STL not required if primary temperature \leq 105°C or use of STM if t_{PR} > t_{smax} ¹⁾
Temperature regulator ²⁾	As of heating medium temp	eratures > 100°C, setpoint v	alue ≤ 60°C, maximum value	As of heating medium temperatures > 100°C, setpoint value ≤ 60°C, maximum value 95°C (not applicable for gr. I)
Low-water protection - Low boiler level	Č₀ ≤ 300 kW Not required if no permissible heating with low water level	án > 300 kW LWP or SPLmin or flow restrictor	To preserve controllability, a minimum , the heat exchanger must be ensured. ³⁰	To preserve controllability, a minimum volume flow via the heat exchanger must be ensured. ³⁾
- Boilers in roof-mounted systems	LWB or SPLmin or flow restrictor or suitable device	rictor or suitable device		-
- Heat generator with heating that is unregu- lated or cannot be quickly deactivated (solid fuel)	Emergency cooling (e.g. thermal discharge safety device, safety heat consumer) with safety temperature limiter to take effect if max. operating temperature exceeded by more than 10 K	ermal discharge safety er) with safety temperature operating temperature K		
Pressure protection		•		
Pressure measuring system	Pressure gauge, display rar	gauge, display range ≥ 150% of max. operating pressure	g pressure	
Safety valve In accordance with prEN 1268-1 or prEN ISO 4126-1, TRD 721	Calculation for steam outflow	~	t _{PR} > t _{dise} (p _{sv}) ³⁾ Calculation for steam outflow with Ġ _n	te _R ≤ t _{asec} (psv) ³⁾ water outflow 1 I/(hkW)
'T expansion trap' per SV	17 for $\dot{Q}_n > 300$ kW, or substitute 1 STL + 1 SPL	titute 1 STL + 1 SPL _{max}		
Pressure limiter max. TÜV-approved	Per heat generator for $\dot{\Omega}_n$ > 300 kW, SPL _{max} = p _{SV} - 0.2 bar	300 kW,	-	1
Pressure maintenance Expansion vessel	- Pressure regulation within boundaries of pi	boundaries of pl pr as exp ining of EVs should be possi	- Pressure regulation within boundaries of p p [,] as expansion vessel or EV with external pressure generation - Protected shut-off and draining of EVs should be possible for maintenance purposes	ernal pressure generation ss
Filling systems	- Assurance of operational r - Connections to potable wa	min. water seal Vws, autom. ater systems must comply wi	- Assurance of operational min. water seal Vws, autom. make-up with water meter - Connections to potable water systems must comply with prEN 806-4, or DIN 1988 or DIN EN 1717	or DIN EN 1717
Heating				
			Primary shut-off valve, if ter > tasee (psv) Recommendation: primary shut-off valve	Primary shut-off valve, if $t_{\rm PR}$ > $t_{\rm ssec}$ (psv) Recommendation: primary shut-off valve also for $t_{\rm PR}$ > $t_{\rm per sec}$
¹⁾ STL recommended as STM automatically releases heating when temperature drops below limit, thus "sanctioning" the failure of the regulator	ases heating when temperatu	ire drops below limit,		
²⁾ If the temperature regulator is not type-tested (e.g. DDC without structure shut-off for max. target temperature), an additional type-tested temperature monitor must be provided in the case of direct heating.	(e.g. DDC without structure sl . must be provided in the case	hut-off for max. target tempe of direct heating.	rature),	
	-)		

Safety equipment of hot water heating systems according to DIN EN 12828 - operating temperatures up to 105°C

44


Based on invalid DIN 4751 T2

3)

Equipment - accessories - safety technology - inspection

Safety equipment of hot water heating systems according to DIN EN 12828 – operating temperatures up to 105°C

Example: direct heating

Key

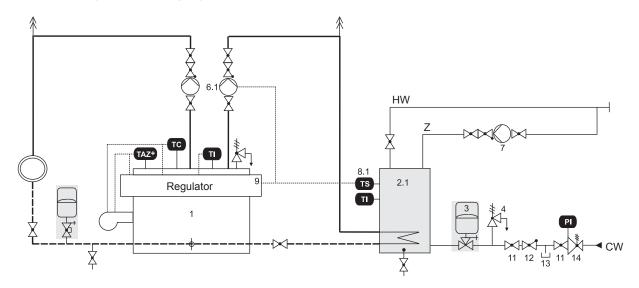
- 1 Heat generator
- 2 Shut-off valves, advance/return
- 3 Temperature regulator
- 4 Safety temperature limiter, STL
- 5 Temperature measuring device
- 6 Safety valve
- 7 Expansion trap ('T') > 300 kW ^{1) 2)}
- 8 SPL_{max} ¹⁾, Q > 300 kW
- 9 SPLmin, as optional substitute for low-water protection
- 10 Pressure gauge.
- 11 Low-water protection, up to 300 kW also as substitute for SPLmin or flow monitor or other permitted measures
- 12 Filling/draining system (filling/draining tap)
- 13 Automatic water make-up ('magcontrol' + 'fillset' + 'fillcontrol')
- 14 Expansion line
- 15 Protected shut-off valve ('SU quick coupling', 'MK cap ball valve')
- 16 Deaeration/draining before expansion vessel
- 13 Expansion vessel (e.g. 'reflex N')
- 14 Pressure reducing valve
- ¹⁾ Not required for indirect heating, if SV (7) can be dimensioned for water outflow (\rightarrow p. 34)
- ²⁾ Not required if additional STL and SPL_{max} fitted

- Code letters,
 - symbols \rightarrow page 53
 - Optional components
 - Part of Reflex product range

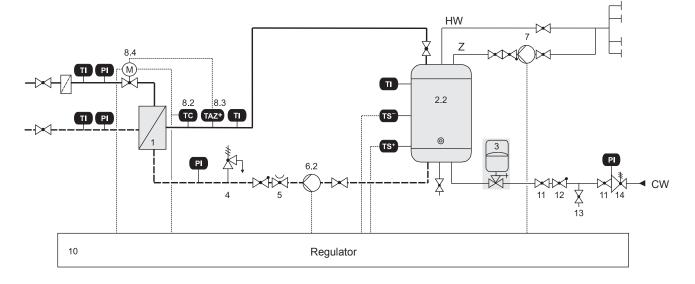
45

Safety equipment of hot water systems according to DIN 4753 T1

Requirements of potable water systems


Potable water heater closed, indirect heating

Grouping according to DIN 4753 T1: Gr. $I p x I \le 300$ bar x liters whereby $\dot{Q} \le 10$ kW or V ≤ 15 I and $\dot{Q} \le 50$ kW Gr. II if gr. I thresholds exceeded


Temperature protection	DIN 4753 T1, DIN 4747
Thermometer	May be part of regulator, not required for gr. I
Temperature regulator type-tested	As of heating medium temperatures > 100°C, setpoint value ≤ 60 °C, maximum value 95°C (not applicable for gr. I)
Safety temperature limiter According to DIN 3440	As of heating medium temperatures > 110°C, setpoint value \leq 95°C, maximum value 110°C for V < 5000 I and $\dot{\Omega} \leq$ 250 kW, no intrinsic safety according to DIN 3440 required; for district heating systems, control valve with safety function according to DIN 32730
Pressure protection	DIN 4753 T1
Pressure gauge	Required for tanks > 1000 l; general installation near safety valve, recommended for cold water systems
Safety valve	 Installation in cold water line No shut-offs or impermissible narrowing between water heater and safety valve
	Nominal content of water spaceMax. heating outputConnection nominal diameter≤ 200 I75 kWDN 15≤ 1000 I150 kWDN 20≤ 5000 I250 kWDN 25> 5000 ISelection according to max. heating capacity
Pressure reducing valve DVGW-approved	Required: - If pressure cold water supply > 80% of safety valve actuation pressure - In case of installation of diaphragm expansion vessels (expansion vessel-W acc. to DIN 4807 T5) to ensure a constant normal pressure level before the vessel
Diaphragm expansion vessels expansion vessel-W acc. to DIN 4807 T5	- Requirements of DIN 4807 T5: Water flow under defined conditions Green color Diaphragms and non-metallic parts acc. to KTW-C as a minimum Installation of pressure reducing valve Protected shut-off of expansion vessel
	- Input pressure set to 0.2 bar below pressure reducing valve
Potable water protection	DIN 1988 T2, T4 or DIN EN 1717
Backflow preventer DVGW-approved	Prescribed for potable water heaters > 10 liters, shut-off on both sides, test system to be implemented after first shut-off
Design type of potable water heaters According to DIN 1988 T2 for heating water	Design type B , corrosion-resistant heating surfaces and linings (copper, stainless steel, enameled) e.g. plate heat exchanger reflex 'longtherm' Permissible for max. operating pressure on heating side ≤ 3 bar
comprying with category 3 of Driv ENTER 177 (absence or minimal amount of toxic additives (e.g. ethylene glycol, copper sulfate solution); see DIN for other media and designs	Design type C = B + no detachable connections; quality of non-detachable connections must be verified by means of a procedure inspection (e.g. AD data sheets, HP series) e.g. tube heat exchanger Also permissible for max. operating pressure on heating side > 3 bar

Safety equipment of hot water systems according to DIN 4753 T1

Example A: Hot water systems in storage system, boiler protection ≤ 100°C

Example B: Hot water systems in storage charging system, heating medium > 110°C protected

Key

- 1 Heat generator (boiler, heat exchanger)
- 2.1 HW tank with integrated heating surface
- 2.2 HW tank without heating surface
- 3 Diaphragm expansion vessel for potable water (see also p. 24-25)
- 4 Diaphragm SV, code letter W
- 5 Volume adjusting valve
- 6.1 Charge pump, heating side
- 6.2 Charge pump, potable water side
- 7 Circulating pump
- 8.1 Thermostat for activating charge pump 6.1
- 8.2 Type-tested temperature regulator
- 8.3 Type-tested temperature limiter
- 8.4 Control valve with safety function
- 9 Boiler regulation with actuation of hot water supply
- 10 Heating regulation with actuation of storage charging system
- 11 Shut-off valve

13

- 12 Check valve
- Also possible as combined fitting (with safety valve 4
- 14 Pressure reducing valve-

Test system

Code letters, symbols → page 53

47

Inspection and maintenance of systems and pressure vessels

What is tested and why

Diaphragm expansion, in-line and blow-off vessels as well as heat exchangers and boilers are all example of pressure vessels. They all possess a risk potential resulting mainly from the pressure, volume, temperature and the medium itself.

Specific legal requirements apply for the manufacture, commissioning and operation of pressure vessels and complete systems.

ManufactureSince 06/01/2002, the production and initial inspection of pressure vessels by the manufacturer, as well
as their placing on the market, has been governed throughout Europe by the Pressure Equipment Directive
97/23/EC (DGRL) . Only pressure vessels complying with this Directive may be brought into circulation.

Reflex diaphragm expansion vessels meet the requirements of Directive 97/23/EC and are marked with the number 0045.

"0045" represents TÜV Nord as the named inspection authority.

A new feature for customers is that the manufacturer certification previously issued on the basis of the steam boiler or pressure vessel ordinance is now being replaced with a **declaration** of conformity. \rightarrow page 52

48

In the case of Reflex pressure vessels, the declaration of conformity is part of the supplied assembly, operating and maintenance instructions.

Operation according to BetrSichV

Within the meaning of the ordinances, the term 'operation' refers to the assembly, use, **pre-commissioning inspection** and **recurring inspection** of systems requiring monitoring. The steam boiler and pressure vessel ordinances previously applicable in Germany were replaced by the **Ordinance on Industrial Safety and Health (BetrSichV)** on 01/01/2003.

With the introduction of the Ordinance on Industrial Safety and Health and the Pressure Equipment Directive, the previously applicable steam boiler and pressure vessel ordinances were finally replaced with a standardized set of regulations on 01/01/2003.

The necessity of inspections prior to commissioning and that of recurring checks, as well as the relevant inspecting authority are defined on the basis of the risk potential in accordance with the specifications of the **DGRL** and **BetrSichV**. For this purpose, the categories medium (fluid), pressure, volume and temperature are applied in accordance with the conformity assessment diagrams in Appendix II of the **DGRL**. A specific assessment for the Reflex product range can be found in tables 1 and 2 (\rightarrow p. 50). The applicability of the specified maximum intervals is subject to compliance with the measures in the relevant Reflex assembly, operating and maintenance instructions.

During the conformity assessment on the part of the **manufacturer according to DGRL**, the maximum permissible parameters for the vessel apply, while the **operator's** assessment according to **BetrSichV** can be based on the maximum actual parameters for the system. Therefore, when assessing and categorizing the pressure PS, the maximum possible pressure must be applied that can occur even in the case of extreme operating conditions, malfunction and operating errors on the basis of the pressure protection of the system or system component. The fluid group is selected according to the actual medium employed.

§ 14 Inspection prior to commissioning

- Assembly, installation
- Installation conditions
- Safe function

§ 15 Recurring inspections

- Documentation and organization check
- Technical inspection
 - External inspection
 - Internal inspection
 - Strength test

For recurring inspections, the operator must define the **inspection intervals** on the basis of a **safety valuation** and the applicable maximum intervals (Tables 1 and 2, \rightarrow p. 50)

If the system is to be commissioned by an authorized inspection body (AIB), the check lists created by the operator must be provided to and agreed with the relevant authority.

The safety evaluation must distinguish between the following:

- The **overall system**, which can also comprise multiple items of pressure equipment and be configured for specific safety thresholds for the system pressure and temperature e.g. hot water bottle with expansion vessel, secured via the safety valve and the boiler's STL.
- The system components e.g. the hot water boiler and expansion vessel may belong to different categories and thus be evaluated differently from a safety perspective.

If the overall system is made up solely of components that must be inspected by a qualified person (QP), the overall system can also be inspected by a QP.

In the case of external and internal checks, inspections may be replaced with other equivalent procedures, while the static pressure tests for strength tests can be substituted with comparable, nondestructive procedures.

Transition For systems comprising pressure equipment commissioned before 01/01/2003, a transitional period applied up to 12/31/2007.

Since 01/01/2008 the provisions of the BetrSichV apply unconditionally to all systems requiring monitoring.

Maintenance While the specifications of the DGRL and BetrSichV are geared primarily towards safety aspects and health protection in particular, the purpose of maintenance work is to ensure optimum and efficient system operation while minimizing faults. System maintenance is performed by a **specialist** commissioned by the operator. This may be a plumber or a Reflex service representative (\rightarrow p. 50).

Maintenance of diaphragm expansion vessels must be performed according to manufacturer specifications, among other things, and thus take place on a yearly basis. This mainly comprises the inspection and adjustment of the vessel input pressure as well as the system filling or initial pressure. $\rightarrow p. 9$

We recommend that our pressurization, make-up and degassing systems be maintained at the same frequency as our diaphragm expansion vessels, i.e. annually.

All Reflex products are supplied with assembly, operating and maintenance instructions (\rightarrow p. 52) containing all relevant information for the plumber and operator.

Table 1: Inspection of Reflex pressure vessels in accordance with BetrSichV, edition dated 09/27/2002, as amended on 12/23/2004, with operation according to Reflex assembly, operating and maintenance instructions Applicable for all Applicable for all

 'reflex', 'refix', 'variomat', 'gigamat', 'reflexomat', 'minimat' vessels as well as the 'servitec' spray tube

and

• 'V in-line vessels', 'EB dirt collectors' and 'longtherm' plate heat exchangers at permissible operating temperatures > 110°C of the system (e.g. STL setting)

Classification in fluid group 2 acc. to DGRL - (e.g. water, air, nitrogen = non-explosive, non-toxic, not easily flammable).

Assessment/category As per diagram 2 in Appendix II of DGRL		Pre-commis- sioning, § 14	0 1 , 0			5
		Inspecting	nspecting Inspecting Maximum intervals		um intervals i	in years
		party party External ¹⁾		internal ²⁾	Strength ²⁾	
V	≤	1 liter and	No special requirements; to be arranged by the operator based on the current state of the art and according to the specifications in the operating manual ³⁾			based on
PS		000 bar				
PS x V	≤	50 bar x liters				

'reflex', 'refix', 'V', 'EB', 'longtherm', 'variomat'-, 'gigamat'-, 'reflexomat'-, 'minimat' vessels						
$PS \times V > 50 \le 200 \text{ bar x liters}$ QP QP No maximum intervals defined ⁴						
PS x V > 20	$00 \le 1000$ bar x liters	AIB**	QP	No maximum intervals defined ⁴⁾		ned ⁴⁾
PS x V	> 1000 bar x liters	AIB**	AIB**		5*/**	10

* Recommendation:

Max. 10 years for 'reflex' and 'refix' with bubble diaphragms as well as 'variomat' and 'gigamat' vessels, but at the very least when opening for repair purposes (e.g. diaphragm replacement) in accordance with Appendix 5 Section 2 and Section 7(1) of BetrSichV

Important note:

As of 01/01/2005, the following applies for applications in heating and cooling systems

In the case of indirectly heated heat generators ('longtherm') with a heating medium temperature no higher than 120°C (e.g. STL setting) and expansion vessels ('reflex', 'refix', 'variomat', 'minimat', 'reflexomat' or 'gigamat' vessels) in heating and cooling/ refrigerating systems with water temperatures no higher than 120°C, the inspections may be performed by a qualified person (QP).

Table 2: Inspection of Reflex pressure vessels in accordance with BetrSichV, edition dated 09/27/2002, as amended on 12/23/2004, with operation according to Reflex assembly, operating and maintenance instructions Applicable for all

Applicable for all

 W in-line vessels', 'EB dirt collectors' and 'longtherm' plate heat exchangers at permissible operating temperatures ≤ 110°C of the system (e.g. STL setting)

Classification in fluid group 2 acc. to DGRL - (e.g. water = non-explosive, non-toxic, not easily flammable).

Assessment/category As per diagram 4 in Appendix II of DGRL		Pre-commis- sioning, § 14	Recurring inspections, § 15			5	
		Inspecting	Inspecting Inspecting Maximum interv		um intervals i	vals in years	
		party	party	External ¹⁾	internal ²⁾	Strength ²⁾	
PS	≤	10 bar or	No special requirements; to be arranged by the operator based on t current state of the art and according to the specifications in the operating manual ³⁾			based on the	
PS x V	>	10000 bar x liters					
If PS	≤	1000 bar					
10 < PS	≤	500 bar and			No movimum	ximum intervals defined ⁴⁾	
PS x V	>	10000 bar x liters	AIB	QP		Intervals delli	

Table 3:Inspection in accordance with BetrSichV, edition dated 09/27/2002, as amended on
12/23/2004, for reflex 'longtherm' brazed plate heat exchangers in systems with hazard-
ous media and operation according to Reflex assembly, operating and maintenance
instructions

Classification in fluid group 1 acc. to DGRL - (e.g. gasoline = explosive, highly flammable, toxic, oxidizing). This fluid group is only permitted for 'longtherm'!

Applicable for permissible operating temperatures $t > t_{\text{boiling}}$ at atmospheric pressure + 0.5 bar.

Assessment/category As per diagram 1 in Appendix II	Pre-commis- sioning, § 14	0			
of DGRL	Inspecting	Inspecting	Inspecting Maximum intervals in yea		
	party party		External ¹⁾	internal ²⁾	Strength ²⁾
V ≤ 1 liter and	No special requirements: to be arranged by the operator based on			based on the	
PS ≤ 200 bar	current state of the art and according to the specifications in the oper				s in the oper-
PS x V ≤ 25 bar x liters	ating manual ³⁾				
PS x V > 25 ≤ 1000 bar x liters				intoruolo dofin	
PS ≤ 200 bar	QP	QP QP No maximum intervals defined ⁴			ieu
PS x V > 200 ≤ 1000 bar x liters	AIB QP No maximum intervals defined ⁴				
PS ≤ 200 bar				ieu	
PS x V > 1000 bar x liters	AIB	AIB		5	10

Note: 'longtherm' plate heat exchangers must be classified in the higher category of the two chambers.

- Note: If the "Assessment/category" column contains multiple criteria without "and" specifications, exceedance of one criterion must result in the application of the next highest category.
- PS Maximum possible overpressure in bar resulting from the system configuration and operation
- n Expansion coefficient for water
- V Nominal volume in liters
- t Operating temperature of fluid
- tooling Boiling temperature of fluid under atmospheric pressure
- QP Qualified person in accordance with § 2 (7) BetrSichV, who possesses the required expertise to inspect the pressure equipment on the basis of his or her training, professional experience or recent professional activity.
- AIB Authorized inspection body in accordance with § 21 BetrSichV; currently TÜV
- ¹⁾ 2-yearly external inspections are not necessary with normal Reflex applications. Only necessary if the pressure equipment is heated by fire, waste gas or electricity.
- In accordance with §15 (10), inspections and strength tests can be substituted with equivalent, non-destructive test procedures if their execution is not possible due to the construction of the pressure equipment or not expedient due to its mode of operation (e.g. fixed diaphragm).
- With regard to the permissible operating pressure of the equipment, this applies to the following products: 'reflex' up to N 12 liters/3 bar, 'servitec' type \leq 120 'longtherm' rhc 15, rhc 40 \leq 50 plates, rhc 60 \leq 30 plates.
- ⁴⁾ To be defined by the operator on the basis of manufacturer information and experience with the mode of operation and supplied medium The inspection can be performed by a qualified person (QP) in accordance with § 2 (7) BetrSichV.
- Irrespective of the permissible operating temperature

Equipment - accessories - safety technology - inspection

'reflex'

Montage-, Betriebs- und Wartungsanleitung Installation, operating and maintenance instructions

Allgemeine Sicherheitshinweise

'reflex' Membran-Druckausdehnungsgefäße sind Druckge-räte. Eine Membrane teilt das Gefäß in einen Wasser- und einen Gasraum mit Druckpotster. Die Konformitätis im Anhang bescheinigt die Obereinstmung mit der Konformitätiserklärung zu ertnehmen. Die gewählte technische Spezifikation zur Erfüllung der grundlegenden Sicherheitsanforderungen des Anhangs I der Richtlinie 97/23E Gi sid em Typenschild bzw. der Konformätäserklärung zu enthehmen.

Montage, Betrieb, Prüfung vor Inbetriebnahme,

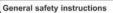
Montage, Betrieb, Prüfung vor Inbetriebnahme, wiederkehrende Prüfungen nach den nationalen Vorschriften, in Deutschland nach der Be-triebesicherbeitsverordnung. Entsprechend sind Montage und Betrieb nach dem Stand der Technik durch Fachpersonal und speziell eingewiesenes Personal durchzuführen. Erforderliche Prüfungen vor Inbetriebnahme, nach wesentlichen Verände-rungen der Anlage und wiederkehrende Prüfungen sind vom Betrieber gemäß den Anforderungen der Betriebssicherholts-verordnung zu veranlassen. Empfohlene Prüfinsten siehe Abschnitt Prüfinsten". Es durfen nur "riflex" ohne äußere sicht-bare Schäden am Druckkörper installiert und betrieben werden. Veränderungen am "reflex".

Veränderungen am 'reflex', z. B. Schweißarbeiten oder mechanische Verformungen, sind unzulässig. Bei Austausch von Teilen sind nur die Originalteile des Herstellers zu verwenden.

des Herstellers zu verwenden. Parameter einhalten Angaben zum Hersteller, Baujahr, Herstellnummer sowie die technischen Daten sind dem Typenschild zu enthehmen. Es sind geeignete sicherheitstechnische Maßnahmen zu treffen, damit die angegebenen zulässigen max. und min. Betriebs-parameter (Druck, Temperatur) nicht über-bzw. unterschritten werden. Eine Überschreitung des zulässigen Betriebsüberd ruckse wasser- und gassettig sowoh im Betrieba als auch beim gassettigen Befüllen, ist auszuschließen. Der Vordruck p darf keinersfalls den zul. Betriebsüberdruck überschreiten. Selbst bei Gefäßen mit zul. Betriebsüberdruck größer 4 bar darf der Vordruck bei Lagerung und Transport nicht mehr als 4 bar betragenz. Zur Gasbetfüllung ist ein Inertgas, z. B. Stickstoff, zu verwenden.

z. B. Stickstoff, zu verwenden. Korrosion, Inkrustation reflex sind aus Stahl gefertigt, außen beschichtet und innen roh. Ein Abnutzungszuschlag (Korrosionszuschlag) wurde nicht vorgesehen. Der Einsatz darf nur in atmosphänsch geschlos-senen Systemen mit nicht korrosiven und chernisch nicht aggressiven und nicht giftigen Wassem erfolgen. Der Zutitt von Luftsauerstoff in das gesamte Heiz- und Kühlwassensystem durch Permeation, Nachspeisewasser usw. ist im Betrieb zuverlässig zu minimieren. Wasseraufbereitungsanlagen sind nach dem aktuelein Stand der Technik auszulegen, zu installie-ren und zu betreiben.

52


Wärmeschutz In Heizwassera Warmeschutz In Heizwasseranlagen ist bei Personengefährdung durch zu hohe Oberflächentemperaturen vom Betreiber ein Warnhinweis in der Nähe des 'reflex' anzubringen.

Aufstellungsort

Aufstellungsort Eine ausreichende Tragfähigkeit des Aufstellortes ist unter Beachtung der Volffüllung des 'reflex' mit Wasser sicherzustellen, Ein- Für das Entlerenungswaser ist ein Abauf bereitzustellen, erforderlichenfalls ist eine Kaltwasserzumischung vorzusehen (siehe auch Abschnitt "Montage"). Eine Aufstellung in erdbe-bengefährdeten Gebieten ist nicht zulässig.

Das Missachten dieser Anleitung, insbesondere der Sicher-heitshinweise, kann zur Zerstörung und Defekten am 'reflex' führen, Personen gefährden sowie die Funktion beeinträcht-gen. Bei Zuwiderhandlung sind jegliche Ansprüche auf Ge-währleistung und Haftung ausgeschlossen.

Example: Reflex assembly, operating and maintenance instructions with declaration of conformity according to DGRL

reflex' diaphragm pressure expansion vessels are pressure devices. They have an gas cushion. A diaphragm separates inflex' in a gas and awater space. The attached conformity cer-tification certifies the compliance to the Pressure Equipment directive 97/23/EC. The scope of the subassembly can be found in the conformity declaration. The technical specification selected to fulfill the fundamental safety requirements of annex to of the directive 97/23/EC. can be found on the nameplate or conformity declaration.

Mounting, operation, test before operation, regular check-up

According to the governing-local regulations, The installation and the operation to be performed to the ait of technique by pro-fessional installers and authorised technical personnel. Necessary tests before operation, after fundamental changes in the installation and periodic inspection have to be initiated by the user acc. to the requirements of the Operational Safety Regulation. Recommendations regarding periodic check-up: see paragraph periodic check-up. Only 'fefex without visible external damage to the pressure body may be installed and operated.

Changes to the 'reflex' [contemportance] for instance welding operations or mechanical deformations are impermissible. Only original parts of the manufacturer may be used when replacing parts.

'reflex'

used when reputung years. Observe the parameters Details concerning manufacturer, year of manufacture, serial number and the technical data are provided on the name plate. Suitable measures must be taken so that the specified permissible maximum and minimum operating parameters

Konformitätserklärung für eine Baugruppe

Declaration of conformity of an assembly

Anhang 1 Annex 1

Konstruktion, Fertigung, Prüfung von Druckgeräten Design - Manufacturing - Product Verification

Angewandtes Konformitätsbewertungsverfahren nach Richtlinie für Druckgeräte 97/23/EG des Europäischen Parlaments und des Rates vom 29. Mai 199 Operative Conformity Assessment according to Pressure Equipment Directive

97/23/EC of the European Parliament and the Council of 29 May 1997

Membran-Druckausdehnungsgefäße: 'reflex F', 'N', 'NG', 'EN', 'S', 'G', universell einsetzbar in Heiz-, Solar- und Kühlwassersyste Diaphragm Pressure Expansion vessels: 'reflex F', 'N', 'NG', 'EN', 'S', 'G',

for operation in heating, solar and cooling sys

Angaben zu Behälter, Seriennummer, Typ und Betriebsgrenzen Data about vessel, serial no., type and working limits	gemäß Typenschild according to name plate			
Beschickungsgut Operating medium	Wasser / Inertgas gemäß Typenschild Water / Inertgas according to name plate			
Normen, Regelwerk	Druckgeräterichtlinie, prEN 13831:2000 gemäß Typenschild			
Standards	Pressure Equipment Directive, prEN 13831:2000 according to name plate			
Druckgerät	Baugruppe nach Richtlinie 97/23/EG Artikel 3 Abs. 2.2 bestehend aus: Behälter, Membrane, Ventil und Manometer (soweit vorhanden)			
Pressure equipment	assembly acc. to Directive 97/23/EC article 3 para- graph 2.2 consisting of: vessel, diaphragm, valve and manometer (as available)			
Fluidgruppe Fluid group	2			
Konformitätsbewertungsverfahren nach Modul	B+D	'reflex N, NG, EN, S, G'		
Conformity assessment acc. to module	A	'reflex F'		
Kennzeichnung gem. Richtlinie 97/23/EG	CE 0045	'reflex N, NG, EN, S, G'		
Label acc. to Directive 97/23/EC	CE	'reflex F'		
Zertifikat-Nr. der EG-Baumusterprüfung Certificate No. of EC Type Approval	\rightarrow Anhang 2 \rightarrow annex 2			
Zertifikat-Nr. der Bewertung des QS-Systems (Modul D) Certificate No. of certification of QS-System (module D)	07 202 1403 Z 0836/9/D0045			
Benannte Stelle für Bewertung des QS-Systems Notified Body for certification of QS-System	TÜV Nord Systems GmbH + Co. KG Große Bahnstraße 31, 22525 Hamburg			
Registrier-Nr. der Benannten Stelle Registration No. of the Notified Body	0045			
Hersteller: Manufacturer:	Der Hersteller erklärt, daß die Baugruppe die Anforderungen der Richtlinie 97/23/EG erfüllt.			
Reflex Winkelmann GmbH Gersteinstraße 19 59227 Ahlen - Germany Telefon: +49 2382 7069-0 Telefax: +49 2382 7069-588 E-Mail: info@reflex.de	The manufacturer herewith certifies this assembly is conformity with directive 97/23/EC.			

Terms

Formula letter	Explanation	See page (among others)
Ap	Working range of pressure maintenance	18
Asv	Closing pressure difference for safety valves	5, 9
n	Expansion coefficient for water	6, 10, 24
n*	Expansion coefficient for water mixtures	6, 13, 16
NR	Expansion coefficient relative to return temperature	11
p₀	Minimum operating pressure	5, 9, 18, 23, 24
pi	Initial pressure	5, 9, 18, 23, 24
Pe	Evaporation pressure for water	6
pe*	Evaporation pressure for water mixtures	6
pf	Final pressure	5, 9, 18
Pfil	Filling pressure	5, 9
Pst	Static pressure	5, 9
psv	Safety valve actuation pressure	5, 9
Psup	Minimum supply pressure for pumps	7
p _{per}	Permissible excess operating pressure	7
V	Compensating volume flow	19
Vs	System volume	6
VA	Specific water content	6
Ve	Expansion volume	5, 9, 23
Vc	Collector content	12, 14, 39
Vn	Nominal volume	9, 18
Vws	Water seal	5, 9
Δp_P	Pump differential pressure	7
ρ	Density	6

Code letters

T – Temperature

Τ	
TI	
TIC	
TAZ+	

P – Pressure

P
PI
PC
PS
PAZ-
PAZ+

L – Water level

LS

LS+

LS⁺

LAZ-

Pressure test port Pressure gauge Pressure regulator Pressure switch Pressure limiter - min, SPLmin Pressure limited - max, SPLmax Water level switch Water level switch- max Water level switch- min

Temperature test port

Temperature regulator with display

Temperature limiter, STL, STM

Thermometer

Code letters according to DIN 19227 T1, "Graphical symbols and code letters for process technology"

Water level limiter - min

Symbols

 \bowtie

Shut-off valve Fitting with protected shut-off and draining Spring-loaded safety valve Check valve Solenoid valve Motorized valve Overflow valve Dirt trap Water meter System separator Pump Heat consumer

In-house contacts

Company management

Managing director
Director, export
Director, domestic operations
General manager
General manager
Management assistants

Peter Hilger Volker Mauel Manfred Nussbaumer Uwe Richter Harald Schwenzig Manuela Heublein Jutta Quante

+49 2382 7069-...

Extension	Fax	
- 753	- 39 753	peter.hilger@reflex.de
- 522	- 39 522	volker.mauel@reflex.de
- 548	- 39 548	manfred.nussbaumer@reflex.de
- 537	- 39 537	uwe.richter@reflex.de
- 508	- 39 508	harald.schwenzig@reflex.de
- 573	- 39 573	manuela.heublein@reflex.de
- 524	- 39 524	jutta.quante@reflex.de

Internal sales

Manager

Werner Hiltrop

Zip code areas 0 + 1 + 7	Guido Krause	- 557	- 588	guido.krause@reflex.de
Zip code areas 2 + 4	Klaus Kuhlmann	- 565	- 588	klaus.kuhlmann@reflex.de
Zip code areas 3 + 5	Andreas Gunnemann	- 576	- 588	andreas.gunnemann@reflex.de
Zip code area 6	Jens Düding	- 554	- 588	jens.dueding@reflex.de
Zip code areas 8 + 9	Werner Hiltrop	- 556	- 588	werner.hiltrop@reflex.de
	Gisela Pätzold	- 575	- 588	gisela.paetzold@reflex.de
Quotations	Marion Tziotis	- 545	- 547	marion.tziotis@reflex.de
	Monika Schneider	- 581	- 547	monika.schneider@reflex.de

Product marketing

Manager	DiplIng. Thomas König	- 590	- 39 590	thomas.koenig@reflex.de
Separation technology	Harald Schwenzig	- 508	- 39 508	harald.schwenzig@reflex.de
Pressure maintenance	Matthias Feld	- 536	- 39 536	matthias.feld@reflex.de
Degassing, water make-up	Andreas Rüsing	- 567	- 39 567	andreas.ruesing@reflex.de
Heat exchangers, storage tanks	Detlev Bartkowiak	- 538	- 39 538	detlev.bartkowiak@reflex.de
Training, media	DiplIng. (FH) Raimund Hielscher	- 582	- 39 582	raimund.hielscher@reflex.de
Media	Sara Linckamp	- 566	- 39 566	sara.linckamp@reflex.de
Diaphragm expansion vessels	Helmut Kittel	- 568	- 39 568	helmut.kittel@reflex.de
Technical hotline		- 546	- 588	info@reflex.de

Service

Manager

Volker Lysk Klaus Becker Simone Lietz

- 512	- 523	volker.lysk@reflex.de
- 549	- 523	klaus.becker@reflex.de
- 584	- 523	simone.lietz@reflex.de

Quality management

Field sales contacts

1 Sales agency INNoTEC Ralf Störck & Arnold Spiwek Am Wiesengrund 1 23816 Groß Niendorf Tel.: +49 45 52/99 66 33 Fax: +49 45 52/99 66 44 Cell: R. Störck +49 172 / 4 53 61 07 A. Spiwek +49 172 / 4 53 61 06 E-mail: innotec@reflex.de

2 Specialist adviser

 Andreas
 Kunkel

 Siegburgstrasse
 9

 44359
 Dortmund

 Tel.:
 +49
 231 / 936
 990
 90

 Fax:
 +49
 231 / 936
 990
 91

 Cell:
 +49
 151 / 167
 160
 08

 E-mail:
 andreas.kunkel@reflex.de

3 Sales agency

Manfred Ernst Westholtskamp 10 59227 Ahlen Tel.: +49 23 82 / 8 01 21 Fax: +49 23 82 / 8 01 23 Cell: +49 178 / 7 06 91 00 E-mail: manfred.ernst@reflex.de

4 Sales agency

Dipl.-Ing Karl-Heinz Slacek Bökendonk 39 47809 Krefeld Tel.: +49 2151 / 54 74 05 Fax: +49 2151 / 54 74 08 Cell: +49 171 / 47 38 429 E-mail: karl-heinz@slacek.de

Birger Schmitt Cell: +49 152 / 54 23 62 42 E-mail: birger.schmitt@reflex.de

5 Sales agency

Dipl.-Ing. (FH) Michael Haas Borngasse 14 55291 Saulheim Tel.: +49 67 32 / 6 27 96 Fax: +49 67 32 / 96 32 36 Cell: +49 172 / 6 80 09 76 E-mail: michael.haas@reflex.de

6 Specialist adviser Reiner Wedekin An der Windmühle 15

An der Windmunie 15 30900 Wedemark - OT Abbensen Tel.: +49 50 72 / 73 43 Fax: +49 50 72 / 74 69 Cell: +49 151 / 180 240 80 E-mail: reiner.wedekin@reflex.de

13 Sales agency **TMZ Technik mit Zukunft** Virnsberger Strasse 24 90431 Nürnberg Tel.: Dieter Servatius +49 911 / 93 64 38-12 +49 151 / 14 71 05-04 Thomas Dillmann +49 911 / 93 64 38-10 Fax: +49 911 / 93 64 38-19 E-mail: dieter.servatius@reflex.de

14 Sales agency

Guido Ülrich Max-Planck-Str. 27 71726 Benningen a. N. Tel.: +49 71 44 / 89 710 50 Fax: +49 71 44 / 89 710 51 Cell: +49 163 / 30 280 06 E-mail: guido.ulrich@reflex.de

Daniel Boldrini Cell: +49 151 / 152 744 02 E-mail: daniel.boldrini@reflex.de

15 Sales agency **Dipl.-Ing. (FH) Christoph Liebermann** Harberger Str. 5 82449 Uffing Tel.: +49 88 46 / 910 70 Fax: +49 88 46 / 910 73 Cell: +49 160 / 9 46 26 456 E-mail: christoph.liebermann@reflex.de

7 Sales agency Dipl.-Ing. Lothar Wilke Bergmühlenweg 22 17429 Seebad Bansin-Neu Sallenthin Tel.: +49 3 83 78/3 14 54 Fax: +49 3 83 78/3 19 73 Cell: +49 172/3 25 55 75 E-mail: lothar.wi ke@reflex.de

8 Sales agency

Hartmuth Müller Friedrich-Ebert-Straße 1a 39179 Ebendorf Tel.: +49 3 92 03/6 13 70 Fax: +49 3 92 03/6 13 79 Cell: +49 172/2 96 54 95 E-mail: hartmuth.mueller@reflex.de

9 Specialist adviser Frank Rieck Im Fleck 7 15834 Rangsdorf / OT Groß Machnow Tel.: +49 3 37 08 / 44 60 2 Fax: +49 3 37 08 / 44 60 3 Cell: +49 151 / 180 240 57 E-mail: frank.rieck@reflex.de

55

10 Specialist adviser **Dipl.-Ing. Winfried Pohle** Gartenstrasse 23 06632 Gleina Tel.: +49 3 44 62 / 2 00 24 Fax: +49 3 44 62 / 2 00 25 Cell: +49 151 / 180 240 62 E-mail: winfried.pohle@reflex.de

11 Sales agency Dipl.-Ing. Lutz Kuhnhardt Erich-Mühsam-Str. 20 04425 Taucha Tel.: +49 3 42 98 / 73 23 3 Fax: +49 3 42 98 / 73 23 4 Cell: +49 178 / 7 06 91 01 E-mail: lutz.kuhnhardt@reflex.de

12 Sales agency **Dipl.-Ing. Karlheinz Müller** Faulbrunnenweg 115 65439 Flörsheim Tel.: +49 61 45 / 93 93 85 Fax: +49 61 45 / 93 93 86 Cell: +49 171 / 3 63 78 82 E-mail: karlheinz.mueller@reflex.de

Quick selection table for 'reflex N' and 'reflex S'

Heating systems : 90/70 °C

For detailed calculations, refer to our brochure "Pressurization Systems -Planning, Calculation, Equipment" or visit www.reflex.de to use or download our calculation software. Alternatively, you can also use our new reflex pro app'!

	5.0						24	90	100	140	210	260	310	410	520	620	830	1030
	4.0 5	2	10	32	75	140	240	430	560	790	1130		1700		2830	3390	4520	660 1
ĥ	3.5 4	24	36	70	130	220	350	600	750	1060	1510 1	1890 1410	2260 1	3020 2260	3770 2	4520 3	6030 4	540 5
	3.0	41	60	110	180	290	450	750	940	1320 1		2360 1	2830 2	3770 3	4710 3	5660 4	7540 6	430 7
E'	5	60	06	150	240	370	560	006	1130	1580 1	2260 1890	2830 2	3390 2	4520 3	5660 4	6790 5	9050 7	310 9
	0	75	110	190	290	440	660	1060	1320	1850	2640	3300	3960	5280	6600	7920 (10560	11140 8910 6680 3610 1210 1000 13200 11310 9430 7540 5660
c	liters 2.0	8	12	18	25	33	50	80 1	100 1	140 1	200 2	250 3	300 3	400 5	500 6	600 7	800 10	00 13
>				1	1	5	43	95	120 1	170 1	240 2	300 2	360 3	480 4	600 5	730 6	970 8	10 10
	5 4.0			0	43	95	170	320	420 1	510 1	720 2	900 3	1080 3		1800 6	2170 7		10 12
0	0 3.5	16	24	55	110	180	300 1	530 3	670 4	940 5			2010 10	2670 1440	3340 18	4010 21	5350 2890	80 36
5.0	5 3.0	37	55	100	170 1	270 1	420 3	710 5	890 6		80 13	30 16	2670 20	70 26	4460 33	5350 40		10 66
	6	55	85	140 1	230 1	360 2	550 4	890 7	1110 8	1560 1250	2230 1780 1340	2790 2230 1670	3340 26	4460 3570	5570 44	6680 53	8910 7130	40 89
-	's 2.0	8	12	18	25 2	33 3	50	80 8										
>	liters		1	-		25 3	70 5	20 8	50 100	0 140	0 200	0 250	0 300	0 400	0 500	0 600	0 800	1000 10890 8170 4350 1460 1000
	3.0	5	2	28	02			-	-	0 200	0 290	0 370	0 440	0 580	0 730	0 880	0 1170	0 146
4.0	2.5	30	45	85 2	50 7	0 130	0 230	0 410	0 430	0 610	0 870	0 1090	0 1300	0 1740	0 2170	0 2610	0 3480	0 435
•	2.0	55 3	80 4	40 8	\sum	0 240	0 380	0 650	0 820	0 1140	2180 1630	2720 2040	3270 2450	4360 3270	0 4080	0 4900	8710 6540	0 817
	1.5			_	230	330	540	870	1090	1530					5450	6540		1089
>	liters	∞	12	18	25	33	50	80	100	140	200	250	300	400	500	600	800	
	1.8		-	17	55	110	200	260	330	460	660	820	066	1320	1650	1980	2640	3300
0	1.5	19	29	60	120	200	320	440	540	760	2100 1090	2630 1360	3150 1630	4200 2180 1320	5250 2720 1650	6300 3260 1980	8400 4350 2640	5440
3.0	1.0	50	75	130	220	340	510	840	1050	1470	2100	2630	3150	4200	5250	6300	8400	10500
	0.5	85	120	200	320	470	700	1120	1400	1960	2800	3500	4200	5600	6920	8400	11200	3830
<pre>~ </pre>	liters	œ	12	18	25	35	50	80	100	140	200	250	300	400	500	600	800	1000
	1.5		1		33	80	110	170	210	300	420	530	630	850	090	1270	0691	2120 1
2.5	1.0	30	45	85	150	240	380	500	620	870	1240	1550	1860	2480	3100 1060	3720 1	1970 1	3210 2
	0.5	65	100	170	270	410	610	980	1230	1720	2450 1240	3060 1550	3680 1860	4900 2480	6130	7350 3720 1270	9800 4970 1690	12250 6210 2120 1000 13830 10500 5440 3300
	Ö	Ś																-
bar	₀ bar	liters																
valve	ssure p	t Vs																
Safety valve P _S v	Input pressure p _o	Content V _s																
ş, ç,	ln J	ŭ																

Reflex Winkelmann GmbH

59227 Ahlen - Germany Gersteinstrasse 19

Fax: +49 2382 7069 -588 Tel.: +49 2382 7069 -0 www.reflex.de

FI0120enH / 9571116 / 04 - 12 Subject to technical change

Selection example	From the table:	Refl
=	With $p_{sv} = 3$ bar, $p_0 = 1.5$ bar,	- Sel
$H = 13 \text{ m}$ $\dot{O} = 40 \text{ kM} \text{ (clater polyrow)}$	V _s = 1340 l	- If p
10	\rightarrow V _n = 250 I (for V _s max. 1360)	gas
Calculate:	Selected:	Ċ
\rightarrow Vs = 40 kW x 8.5 l/kW + 1000 $$ 1 x 'reflex N' 250, 6 bar \rightarrow p.4 $$	1 x 'reflex N' 250, 6 bar \rightarrow p.4	aui -
= 1340	1 x 'SU R1' cap ball valve	-
$\rightarrow p_0 \ge \left(\frac{13}{10} + 0.2 \text{ bar}\right) = 1.5 \text{ bar}$	\rightarrow p.7	- In sur

Approximate water content:

V_s = Ġ [kW] x 13.5 l/kW | V_s = Ġ [kW] x 8.5 l/kW Panel-type radiators Radiators

lex recommendations:

- elect sufficiently high safety valve actuation pressure p_w ≥ p₀ + 1.5 bar
- possible, apply a 0.2 bar margin when calculating the
 - is input pressure: $p_0 \ge \frac{H[m]}{10} + 0.2$ bar
- Le to the required supply pressure for the circulating pumps, select an out pressure of at least 1 bar for roof-mounted systems also: $p_0 \ge 1$ bar
- a vented system in cold conditions, set the water-side filling or initial presre at least 0.3 bar higher than the input pressure: $p_{ii} \ge p_0 + 0.3$ bar