LOCOTHERM

Пример расчета системы отопления

С применением кеартирных станчий LogoComfort

Содержание

1. Введение.
2. Модель установки
3. Определение необходимого расхода теплоносителя для приготовления горячей воды.
4. Определение потери давления для квартирной станции.
5. Определение диаметра и потерь давления соединительного участка (от стояка до квартирной станции).
6. Расчет расхода теплоносителя в стояках.
7. Определение диаметра и потерь давления в стояках.
8. Настройка регулирующего органа (гидравлическое выравнивание).
9. Расчет потребности в теплоносителе для источника тепла.
10. Определение диаметров и потерь давления у источника тепла.
11. Определение общего расхода теплоносителя для системы.
12. Диаметры и соединения (от источника тепла к распределительной системе) определение потери давления в системе.
13. Выбор насосов для контура отопления и нагрева бака-накопителя для покрытия пиковых нагрузок.
14. Определение нагрузки для нагрева бака-накопителя.

1. Введение

- квартирная станция является готовым модулем для отопления и приготовления горячей воды
- теплоноситель подводится от центрального стояка к квартирной станции. В шахте располагаются только 3 стояка (отпадает необходимость в центральном стояке ГВС и линии циркуляции)
- при расчетах необходимо учитывать расход теплоносителя для отопления и нагрева горячей воды
- подбор оборудования для системы отопления внутри квартиры не требует изменений
- для определения расхода воды на нужды хоз.-питьевого назначения используют общепринятые нормы. Суммарный расход воды в стояках, распределительных коллекторах, т.е. от ввода в здание до подключения квартирной станции, определяется как сумма требуемого расхода холодной воды и расхода горячей воды; при выборе диаметра системы хоз.-питьевого водоснабжения необходимо учитывать сопротивление квартирной станции на вторичном контуре.

2. Модель установки.

LOGGHERM

Segment 1 Segment 2

- расстояние от стояка до квартирной станции:

1 m

- расстояние от источника тепла до распределительного коллектора: 3 m

1-источник тепла, 2-загрузочный насос бака-накопит.
3-бак-накопитель, 4-насос СО, 5 регулятор
давления, 5-квартирная станция LogoComfort

2. Модель установки

Основные параметры:

- разводка системы отопления на медных трубах
- потери давления в источнике тепла 0,1 бар
- температура подающей линии $65{ }^{\circ} \mathrm{C}$
- 12 квартир с потреблением тепла 3 кВт
- разность температуры 20 K (для выбора радиаторов)
- требуемый расход теплоносителя 131,54 л/час на квартиру
- потери давления на контуре квартиры 0,1 бар
- серийное исполнение станции LogoComfort типом теплообменника WP 22-22
- счетчик расхода тепла установлен в каждой станции
- потребление горячей воды на хоз.-питьевые нужды 12 л./мин.
- нагрев холодной воды на 40 K (от $10^{\circ} \mathrm{C}$ до $50^{\circ} \mathrm{C}$)

задано:

- квартирная станция:
- температура подающей линии:
- расход горячей воды:
- нагрев горячей воды:

LogoComfort базисное исполнение с типом теплообменника WP 22-22
$65{ }^{\circ} \mathrm{C}$
12 л./мин.
40 K (от $10{ }^{\circ} \mathrm{C}$ до $50^{\circ} \mathrm{C}$)

Logotherm модульная система.
Необходимый расход греющего теплоносителя для нагрева горячей воды на $40 К$

> в зависимости от температуры подающей линии

Модуль: WP 22-22

задано:

- квартирная станция:
- температура подающей линии:
- расход горячей воды:
- нагрев горячей воды:

LogoComfort серийное исполнение с теплообменником WP 22-22
$65{ }^{\circ} \mathrm{C}$
12 л/мин.
40 K (от $10^{\circ} \mathrm{C}$ до $50^{\circ} \mathrm{C}$)

Результат:

- требуемый расход теплоносителя для нагрева горячей воды: 850 л/час

Принимаем в качестве среднего расхода теплоносителя для каждой квартирной станции.

задано:

- квартирная станция:

LogoComfort серийное исполнение
с типом теплообменника WP 22-22
и счетчиком расхода тепла

- необходимый расход теплоносителя для приготовления горячей воды : 850 л/час

4.

Диаграмма потери давления (бар) в зависимости от
Volumenstrom-Druckverlust-Diagramm Wärmemengenzähler Kundo G 01 / 3015 расхода теплоносителя (л\час)
для счетчика тепла фирмы Kundo G 013015

задано:

- квартирная станция:

LogoComfort серийное исполнение с типом теплообменника WP 22-22 и счетчиком тепла

- необходимый расход теплоносителя для нагрева горячей воды:

850 л/час

результат:

- потери давления в квартирной станции

во время водоразбора : 0,15 бар

- потери давления на счетчике тепла:
$+\underline{0,077}$ bar
- Сумма:

0,227 bar

Принимаем в качестве средней потери давления на каждой квартирной станции
5. Определение диаметра и потерь давления соединительного участка (от стояка до квартирной станции).

Легенда

1-источник тепла, 2-загрузочный насос бака-накопителя
3-бак-накопитель, 4-насос СО, 5-регулятор перепада давления, 5-квартирная станция LogoComfort

5. Определение диаметра и потерь давления соединительного участка (от стояка до квартирной станции).

Segment 1
Strang 1.1

задано:

- материал труб: Cu
- длина: 1 m
- массовый расход:

850 лไчас

Результат:

- Диамтер разводки:

Cu 28x1,5 DN 25

- Потери давления:

0,0023бар
(прямая и обратная)

Принимаем в качестве среднего значения для каждой установки

5- регулятор перепада давления
6 - квартирная станция LogoComfort
5. Определение диаметра и потерь давления соединительного участка (от стояка до квартирной станции).

Segment 1

результат:

- массовый расход
- диаметр труб:

Cu 28x1,5
DN 25

- потери давления:

0,0023 bar (прямая + обратная)

- потери на станции: $+\mathbf{0 , 2 2 7}$ bar
- Сумма: 0,2293 bar

Принимаем в качестве среднего значения для каждой установки
5- регулятор перепада давления
6 - квартирная станция LogoComfort

Segment 1
Strang 1.1

Расчет расхода теплоносителя в стояках.

Определение коэффициента одновременного использования пикового разбора горячей воды в зависимости от общего количества квартир

Anzahl der gleichzeitig warmwasserzapfenden WE in Abhängigkeit der Anzahl der versorgten WE für 1 bis 14 WE

Segment 1
Strang 1.1

задано:

- кол-во квартир на стояке: 3 WE
- расход на нагрев горячей воды:

850 л/час

- расход на отопление кв.:131,54 л/час

Результат:

- коэффициент одновременного использования: 1,72 WE 2 WE

Квартирная станция фирмы Logotherm работает в 6) приоритетном режиме на нагрев горячей воды. На пике водоразбора квартирная станция направляет всю энергию на нагрев горячей воды. После нагрева горячей воды станция автоматически продолжает нагрев помещения до требуемой температуры.

Segment 1
Strang 1.1

KG

задано:

- материал труб: Cu
- длина участка: 3 m
- Массовый расход: 1) 850 л/час

2) 1700 л/час 3)1831,54 л/час

результат:

- диаметры труб: 1. Cu 28x1,5 DN 25

2. Cu $35 \times 1,5$ DN 32
3. $\mathrm{Cu} 35 \times 1,5$

DN 32

- потери двления
(прямая и обрат.): 1. 0,0067 бар

2. 0,0071 бар
3. 0,0081 бар

Segment 1

5 регулятор перепада давления
6 Logocomfort квартирная станция
VL - подающая линия
RL - обратная линия

результат:

1. Расход:	850 л/час
диаметр труб:	$\mathrm{Cu} \mathrm{28} \mathrm{\times 1,5}$
	DN 25
потери давл.(VL+RL):	0,0067 бар

- Потери давления квартирная станция + подключение:
+ 0,2293 бар
- итого по 1 пункту: 0,236 бар

2. Расход: 1700 л/час диаметр труб: $\mathrm{Cu} 35 \times 1,5$ DN 32
потери давл. (VL+RL): + 0,0071 бар

- итого по п. 2: 0,2431 бар

3. Расход: диаметр труб: 1831,54 л/час Cu $35 \times 1,5$ DN 32 потери давл. (VL+RL): + 0,0081 бар

- Сумма:

0,2512 бар
Полученные расчетные данные действуют для каждого отдельного стояка

8 Настройка

Segment 1
Strang 1.1

задано:

- макс. Расход

Теплоносителя в стояке:1831,54 л/час

- необходимый перепад

давления:
0,2512 бар

Легенда

5 регулятор перепада давления
6 Logocomfort квартирная станция

Legende
5 Differenzdruckregler (Balancer)
6 LogoComfort Wohnungsstation

8.
 Настройка регулирующего выравнивание).

8.
 Настройка регулирующего

Segment 1
Strang 1.1

задано:

- макс. Расход в стояке: 1831,54 л/час
- необходимый перепад давления:

0,2512 бар

результат:

- настройка пружины: 5

Полученные данные по настройке действуют для каждого отдельного стояка

Легенда
5 регулятор перепада давления
6 Logo comfort квартирная станция

8 Настройка

Segment 1
Strang 1.1

результат:

- шкала настройки:

выбранный параметр устанавливается на каждом стояке действующей устанвоки

8. Настройка регулирующего органа (гидравлическое выравнивание).

Segment 1
Strang 1.1

задано:

- массовый расход: 1831,54 л/час

Настройка регулирующего выравнивание).

Segment 1
Strang 1.1

задано:

- массовый расход: 1831,54 л/час

результат:

- потери на клапане: 0,065 бар
- потери на стояке: $+0,2512$ бар
- Summe:

0,3162 бар
данные действуют для каждого регулятора давления в стояке

Легенда
5 регулятор перепада давления
6 Logo comfort квартирная станция
ww - выход горячей воды
kw - подключение холодной воды

Segment 1
Strang 1.1

Legende

(5) Differenzdruckregler (Balancer)

6 LogoComfort Wohnungsstation

Легенда
5 регулятор перепада давления
6 Logo comfort квартирная станция

Segment 1

Segment 1
Strang 1.1

задано:

- расход теплоносителя: 131,54 л/час

5 Differenzdruckregler (Balancer)
6 LogoComfort Wohnungsstation

Logotherm Modulsystem

LOGGHERM

Volumenstrom-Druckverlust-Diagramm
Wärmemengenzähler Kundo G 01 / 3015
Диаграмма потери давления на счетчике
Расхода тепла, прибор фирмы Kundo G 0113015

Segment 1
Strang 1.1

задано:

- расход теплоносителя: 131,54 л/час

результат:

- потери давления на квартирной станции в режиме отопления: 0,01бар
- потери на счетчике

Тепла во время работы режима отопления: $+0,002$

- Сумма:

0,012 bar

- необходимая настройка давления на зональном вентиля: 0,227 bar
- 0,1 bar
- 0,012 bar

0,165 bar

Segment 1
Strang 1.1

задано:

- расход теплоносителя: 131,54 л/час
- необходимая настройка давления на зональном вентиле:

0,165 бар

Легенда
5 регулятор перепада давления
6 LogoComfort квартирная станция

Einstellkurven für das Zonenventil
Einstellungsangaben in Merkzahl und Grad (2 Umdrehungen = voll geöffnet $=$ Merkzahl 20 bzw. 720°)

Segment 1
Strang 1.1

задано:

- расход теплоносителя:

131,54 л/час

- необходимая настройка на зональном вентиле: 0,165 бар

результат:

- настройка: $2\left(72{ }^{\circ}\right)$

Полученное значение применяется для настройки зонального вентиля в каждой станции

Segment 1
Strang 1.1

Результат:

- Настройка: $2\left(72{ }^{\circ}\right)$

данные для каждого вентиля в рассматриваемом примере

1-источник тепла, 2-загрузочный насос бака-накопителя
3-бак-накопитель, 4-насос системы отопления, 5 регулятор перепада давления, 5-квартирная станция LogoComfort

Segment 1

задано:

- количество квартир в коллекторе: 6
- расход теплоносителя для приготовления ГВС.: 850 л/час кв.
- расход теплоносителя на отопление:

131,54 л/час кв.

Легенда
5 - регулятор перепада давления 6 - LogoComfort квартирная станция
5) Differenzdruckregler (Balancer)

6 LogoComfort Wohnungsstation

LOGGHERM
Количество квартир, которые одновременно могут использовать
пиковый расход на ГВС (от 1 до 14)

Segment 1

задано:

- кол-во квартир: 6 кв.
- расход на ГВС.: 850 л/час кв.
- расход на отопление:

131,54 l/h кв.

результат:

- кол-во одноврменного

Использования ГВС: 2,45 WE ≈ 3 WE
Legende
(5) Differenzdruckregler (Balancer)

6 LogoComfort Wohnungsstation
10.

Определение диаметров трубопроводов и потерь Давления по сегментам модели.

Segment 1
, $0 \mathrm{~m} \quad$ Strang 1.2

задано:

- материал труб: Cu
- длина: $\begin{array}{lll} & 1 . & 4 \mathrm{~m} \\ & \text { 2. } 2,5 \mathrm{~m}\end{array}$
- расход теплоносителя:

1.
2.

1831,54 л/час
2944,62 л/час

результат:

- диаметры:

1. $\mathrm{Cu} 35 \times 1,5$ DN 32
2. $\mathrm{Cu} 42 \times 1,5$ DN 40

- потери
(VL+RL):

1. 0,0108 бар
2. 0,0061 бар

Подающая и обратная линии

Segment 1

Результат:

1. Расход теплоносит.: $1831,54 л / ч а с$ диаметры: Cu $35 \times 1,5$ DN 32 потери давления (VL+RL):

0,0108 бар
30 \% запаса:

+ 0,0032 бар
- потери давления в стояке:
$+0,3162$ бар
- промеж. сумма: 0,3302 бар

2. Расход теплоносит.: 2944,62 л/час диаметр: $\mathrm{Cu} 42 \times 1,5$ DN 40 потери давления (VL+RL):

+ 0,0061 бар
30 \% запаса:
$+0,0018$ бар
- сумма:

0,3381 бар
Принимается как среднее значение для сегмента модели

11.
 Определение общего расхода теплоносителя для модели.

Segment 1
Strang 1.1

Segment 2

Легенда
1-источник тепла, 2-загрузочный насос бака-накопителя
3-бак-накопитель, 4-насос СО, 5-регулятор перепада давления, 5-квартирная станция LogoComfort

задано:

- кол-во квартир в установке:
- расход теплоносителя для ГВС:
- расход теплоносителя на отопление:

12 квартир
850 л/час на 1 квартиру
131,54 л/час на 1 квартиру

Количество квартир, которые одновременно могут использовать пиковый расход на ГВС (от 1 до 14)

Anzahl der gleichzeitig warmwasserzapfenden WE in Abhängigkeit der Anzahl der versorgten WE für 1 bis 14 WE

задано:

- кол-во квартир:
- расход теплоносителя для ГВС :
- расход теплоносителя на отопление :

12
850 л/час на квартиру
131,54 л/час на квартиру

результат:

- коэффициент одновременного водоразбора:
- расход теплоносителя для ГВС :
- расход теплоносителя на отопление:
- общий расход теплоносителя:
$2,95 \approx 3$ квартиры

3 кв. • 850 л/час кв. $=2550$ л/час
9 кв•131,54 л/час кв. $=1183,86 л / ч а с$
3733,86 л/час

Диаметры и длины системы (от источника тепла до системы распределения) и определение потерь давления всей системы.

задано:

- материал труб:

Cu

- длина:
- массовый расход:

3733,86 л/час

результат:

- диаметр трубопровода:
- потери давления (прямая + обратная): 30 \% запас:

Cu 54x2
DN 50
0,0034 бар
потери на сегменте:

- Сумма:
+ 0,0011 бар
$+0,3381$ бар
0,3426 бар

Диаметры и длины системы (от источника тепла до системы распределения) и определение потерь давления всей системы.

Segment 1

Легенда
1-источник тепла, 2-загрузочный насос бака-накопителя
3-бак-накопитель, 4-насос СО, 5-регулятор перепада давления, 5квартирная станция LogoComfort

13 Выбор насосов для отопления и нагрева бака-
 накопителя.

Segment 1 Segment 2

Легенда
1-источник тепла, 2-загрузочный насос бака-накопителя
3-бак-накопитель, 4-насос СО, 5-регулятор перепада давления, 5-
квартирная станция LogoComfort

13 Выбор насосов для отопления и нагрева баканакопителя.

задано:

- насос контура отопления
- насос загрузки бака-накопителя

массовый расход: 3733,86 л/час разность давления: 0,3426 бар
массовый расход: 3733,86 л/час разность давления: 0,1 бар
13. Выбор насосов для отопления и нагрева баканакопителя.

насос отопления
насос бака-накопителя

13. Выбор насосов для отопления и нагрева баканакопителя.

задано:

- насос контура отопления
- насос бака-накопителя

расход:	3733,86 л/час
разность давления:	0,3426 бар
расход:	3733,86 л/час
разность давления:	0,1 бар

результат:

- насос контура отопления:
- насос для бака-накопителя:

UPE 32-80
UPS 32-55

13 Выбор насосов для отопления и нагрева бака-
 накопителя.

Segment 1

Легенда
1-источник тепла, 2-загрузочный насос бака-накопителя
3 -бак-накопитель, 4-насос $\mathrm{CO}, 5$-регулятор перепада давления, 5 квартирная станция LogoComfort

Segment 1

Легенда

1-источник тепла, 2-загрузочный насос бака-накопителя
3-бак-накопитель, 4-насос СО, 5-регулятор перепада давления, 5квартирная станция LogoComfort

задано:

- кол-во квартир:
- коэффициент одновременного использования ГВС:
- нагрузка:
- средняя нагрузка при потреблении ГВС:
- время «критического» водоразбора:
- время «реагирования» источника тепла:
- дополнительная мощность источника тепла (запас):
- макс. снижение температуры под. линии:

12 квартир
3 квартиры
12 кв. • 3 кВт/кв. = 36 кВт
15 кВт/кв. (опыт. данные)
5 мин. (опытные данные)
3мин.
20\% от 36 кВт = 7,2 кВт 10 K (подача не ниже $55^{\circ} \mathrm{C}$)

результат:

- потери энергии на источнике тепла во время «пикового» водоразбора:

количество энергии для «пикового» водоразбора:
3 кв. • 15 кВт/кв. • 5 мин. = 225 кВт мин.
минус «запас» энергии, т.е. Дополнительной мощности:

$$
\text { 7,2 кВт • } 2 \text { мин. } \quad=-14,4 \text { кВт мин. }
$$

потеря энергии установки:
210,6кВт мин.

задано:

- кол-во квартир:
- коэффициент одновременного использования ГВС:
- нагрузка:
- средняя нагрузка при потреблении ГВС:
- время «критического» водоразбора:
- время «реагирования» источника тепла:
- дополнительная мощность источника тепла (запас):
- макс. снижение температуры под. линии:

12 квартир
3 квартиры
12 кв. - 3 кВт/кв. $=36$ кВт
15 кВт/кв. (опыт. данные) 5 мин. (опытные данные) 3мин.
20\% от 36 кВт = 7,2 кВт 10 K (подача не ниже 55°

результат:

- потери энергии на источнике тепла во время «пикового» водоразбора : 210,6кВт мин.
- рекомендуемая емкость бака-накопителя для исключения потерь:

кВт мин.

В случае, когда известна емкость источника тепла и трубопроводов подающей линии, рекомендуется вычитать из расчетной емкости бака-накопителя емкость источника тепла + емкость трубопроводов от источника до квартирных станций

задано:

- кол-во квартир:
- коэффициент одновременного использования ГВС:
- нагрузка:
- средняя нагрузка при потреблении ГВС:
- время «критического» водоразбора:
- время «реагирования» источника тепла:
- дополнительная мощность источника тепла (запас):
- макс. снижение температуры под. линии:

12 квартир
3 квартиры
12 кв. $\cdot 3$ кВт/кв. $=36$ кВт
15 кВт/кв. (опыт. данные)
5 мин. (опытные данные)
3мин.
20\% от 36 кВт $=7,2$ кВт
10 K (подача не ниже $55^{\circ} \mathrm{C}$)

результат:

- потери энергии на источнике тепла во время «пикового» водоразбора : 210,6 кВтмин
- рекомендуемая емкость бака-накопителя для снижения потерь: 307,8 I
- время нагрева бака-накопителя после «пикового» водоразбора :

$$
\frac{210,6 \mathrm{~kW} \min }{7,2 \mathrm{~kW}}=\quad 29,25 \text { мин. }
$$

Например, согласно Европейским нормам, время нагрева бака-накопителя не должно превышать более 10 мин. В связи с этим, «запас» мощности был увеличен на 20 \%, что позволит обеспечить нагрев бака в интервале 10 мин.

задано:

- кол-во квартир:
- коэффициент одновременного использования ГВС:
- нагрузка:
- средняя нагрузка при потреблении ГВС:
- время «критического» водоразбора:
- время «реагирования» источника тепла:
- дополнительная мощность источника тепла (запас):
- макс. снижение температуры под. линии:

результат:

- потери энергии на источнике тепла во время «пикового» водоразбора : 187,4кВтмин
- рекомендуемая емкость бака-накопителя для снижения потерь: 273,9 л.
- время нагрева бака-накопителя после «пикового» водоразбора : 9,97 мин.
- необходимая мощность источника тепла:

47,6 кВт
\rightarrow выбранный бак-накопитель:
500 л.
\rightarrow выбранный источник тепла:

Segment 1

1-источник тепла, 2-загрузочный насос бака-накопителя
3-бак-накопитель, 4-насос СО, 5-регулятор перепада давления, 5квартирная станция LogoComfort

LOCGTHERM

Большое спасибо за Baue єнимание!

www.meibes.ru
... dezentrale Wärmeverteilung und Trinkwasser-Erwäarmung

