Q. Impumps

NMT(D) MAX (C)

SI Navodila za vgradnjo in uporabo

EN Installation and operating manual

DEU Montage und Betriebsanleitung

ITA Manuale di installazione ed uso

FI Asennus- ja käyttöohje

HRT Uputa za uporabu

Русский Руководство по установке и эксплуатации

FR Installation et mode d'emploi

SI: Skladnost izdelka z EU standardi :

- Direktiva o strojih (2006/42/EC). Uporabljen standard: EN 809;
- Direktiva o nizki napetosti (2014/35/EU). Uporabljen standard: EN 60335-1; EN 60335-2-51;
- Direktiva o elektromagnetni združljivosti (2014/30/EU) Uporabljen standard: EN 55014-1; EN 55014-2; EN 61000-3-2; EN 61000-3-3;
- Eco-design direktiva (2009/125/EC) Uporabljen standard: EN 16297-1:2012;
- Črpalke: Uredba Komisije št. 641/2009.

Energijski učinkovitostni razred (EEI) je na napisni tablici. Uporabljen standard: EN 16297-1:2012; EN 16297-2:2012;

EN: Compliance of the product with EU standards:

- Machinery directive (2006/42/EC).

Standard used: EN 809;

- Low Voltage (2014/35/EU). Standard used: EN 60335-1; EN 60335-2-51;
- Electromagnetic compatibility (2014/30/EU) Standard used: EN 55014-1; EN 55014-2; EN 61000-3-2; EN 61000-3-3;
- Ecodesign Directive (2009/125/EC) Standard used: EN 16297-1:2012;
- Circulators:Commission Regulation No. 641/2009. For EEI see nameplate. Standard used: EN 16297-1:2012; EN 16297-2:2012;

DEU: Die Übereinstimmung des Produkts mit den EU-Standards:

- Maschinenrichtlinie (2006/42/EC).

Norm, die verwendet wurde: EN 809;

- Niederspannungsrichtlinie (2014/35/EU). Norm, die verwendet wurde: EN 60335-1; EN 60335-2-51;
- Elektromagnetische Verträglichkeit (2014/30/EU) Norm, die verwendet wurde: EN 55014-1; EN 55014-2; EN 61000-3-2; EN 61000-3-3;
- Ökodesign-Richtlinie (2009/125/EC) Norm, die verwendet wurde: EN 16297-1:2012;
- Verordnung der EU-Kommission Nr. 641/2009. EEI auf dem Typenschild aufgeführt ist. Norm, die verwendet wurde: EN 16297-1:2012; EN 16297-2:2012;

ITA: Conformita' del prodotto agli standard EU:

- Direttiva macchine (2006/42/EC). Normativa : EN 809;
- Bassa tensione: (2014/35/EU). Normativa : EN 60335-1; EN 60335-2-51;
- Compatibilita' elettromagnetica (2014/30/EU) Normativa : EN 55014-1; EN 55014-2; EN 61000-3-2; EN 61000-3-3;
- Direttiva Eco-design (2009/125/EC) Normativa: EN 16297-1:2012;
- Circolatori : Normativa Nr. 641/2009. Indice EEI indicato sulla targhetta. Normativa: EN 16297-1:2012; EN 16297-2:2012;

FI: Tuotteen EU-standardienmukaisuus:

- Konedirektiivi (2006/42/EY).

Standardi(t): EN 809;

- Pienjännitedirektiivi (2014/35/EU). Standardi(t): EN 60335-1; EN 60335-2-51;
- Sähkömagneettinen yhteensopivuus (2014/30/EU)

Standardi(t): EN 55014-1; EN 55014-2; EN 61000-3-2; EN 61000-3-3;

- Ekologisen suunnittelun direktiivi (2009/125/EY) Standardi(t): EN 16297-1:2012;
- Kiertovesipumput: Komission asetus nro 641/2009.

Katso EEI tyyppikilvestä.
Standardi(t): EN 16297-1:2012; EN 16297-2:2012;
HR: Sukladnost proizvoda s EU standardima:

- Direktiva o strojevima (2006/42/EC).

Korišten standard; EN 809;

- Direktiva o niskom naponu (2014/30/EU).

Korišten standard: EN 60335-1; EN 60335-2-51;

- Direktiva o elektromagnetskoj kompatibilnosti (2014/35/EU)

Korišten standard: EN 55014-1; EN 55014-2; EN 61000-3-2; EN 61000-3-3;

- Eco-design direktiva (2009/125/EC)

Korišten standard: EN 16297-1: 2012;

- Crpke: Uredba Komisije br. 641/2009. Energetski razred učinkovitosti (EEI) nalazi se na natpisnoj pločici. Korišteni standard: EN 16297-1:2012; EN 16297-2:2012;

Русский: Соответствие изделия стандартам EC:

- Директива по машинному оборудованию (2006/42/EC). Применяемый стандарт: EN 809;
- Директива по низковольтному оборудованию (2014/35/EU). Применяемый стандарт: EN 60335-1; EN 60335-2-51;
- Директива по электромагнитной совместимости (2014/30/EU) Применяемый стандарт: EN 55014-1; EN 55014-2; EN 61000-3-2; EN 61000-3-3;
- Директива по энергоэффективному оборудованию (2009/125/EC) Применяемый стандарт: EN 16297-1:2012;
- Циркуляционные насосы: Регламент комиссии № 641/2009.

Индекс энергоэффективности (EEI) указан на заводской табличке. Применяемый стандарт: EN 16297-1:2012; EN 16297-2:2012

Français (FR): La conformité du produit avec les normes européennes:

- Directive de machinerie (2006/42/EC).

Norme harmonisée: EN 809;

- Directive de basse tension (2014/35/EU).

Norme harmonisée: EN 60335-1; EN 60335-2-51;

- Directive de la Compatibilité électromagnétique (2014/30/EU)

Norme harmonisée: EN 55014-1; EN 55014-2; EN 61000-3-2; EN 61000-3-3;

- Directive sur l'éco conception (2009/125/EC) Norme harmonisée: EN 16297-1:2012;
- Circulateurs: Règlement de la Commission № 641/2009. Classe d'efficacité énergétique et la plaque. Norme harmonisée: EN 16297-1:2012; EN 16297-2:2012
Slovensko (SI) Navodila za vgradnjo in uporabo
vSEBINA
1 Splošne informacije 4
1.1 Uporaba 5
1.2 Označevanje črpalk 5
1.3 Vzdrževanje, rezervni deli in razgradnja 6
2 Varnost 6
3 Tehnične specifikacije 6
3.1 Standardi, zaščite in specifikacije 6
3.2 Pretočni medij 7
3.3 Temperatura in Vlažnost 7
3.4 Električne specifikacije 7
3.5 Specifikacije komunikacije 8
4 Vgradnja črpalke 10
4.1 Vgradnja v cevovod 10
4.2 Električni priklop 11
4.3 Priklop komunikacije 11
5 Nastavitev in delovanje 12
5.1 Nadzor in funkcije 12
5.2 Delovanje 17
6 Pregled možnih napak in rešitev 20
7 odkrivanje napak 20
7.1 Kode napak 20
Krivulje črpalk se nahajajo na strani 150.
Pridržujemo si pravico do spremembSimboli uporabljeni v navodilih:

Varnostno opozorilo:
Neupoštevanje varnostnega opozorila, lahko povzroči telesne poškodbe ali naprave.

Nasvet:
Nasveti, ki lahko olajšajo delo s črpalko.

1 SPLOŠNE INFORMACIJE

1.1 UPORABA

Obtočne črpalke NMT (new motor technology) so namenjene črpanju tekočin v sistemih centralnega ogrevanja, prezračevanja in klimatskih naprav. Izvedene so kot enojni ali dvojni črpalni agregati z vgrajeno elektroniko za regulacijo moči črpanja. Črpalka neprekinjeno meri tlak in pretok in prilagaja vrtljaje izbranemu tlaku.
Na voljo sta dve izvedenki, črpalka NMT(D) MAX in NMT(D) MAX C. Slednja ima opcijo daljniskega upravljanja in nadzora, preko etherneta, modbusa, analognih vhodov in izhodov, ter relejski nadzor. Črpalke NMT(D) MAX pa imajo opcijo dokupa NMTC modula, ki da črpalki vse opcije komunikacije NMT(D) MAX C. Črpalke NMT(D) MAX C imajo podrobnejša navodila o komunikaciji razložena v ločenih navodilih za NMTC modul, ki se nahajajo na spletni strani: »http://imp-pumps.com/en/documentation/«. Ali preko QR kode:

Osnovni namen dvojne črpalke je nemoteno delovanje ob izpadu ene izmed črpalk. V skupnem hidravličnem ohišju je preklopna loputa in dve črpalki, ki sta ločeno povezani v električno omrežje.

1.2 OZNAČEVANJE ČRPALK

1.3 VZDRŽEVANJE, REZERVNI DELI IN RAZGRADNJA

Črpalke v normalnih pogojih obratujejo več let brez vzdrževanja. Čas zagotavljanja rezervnih delov za ta izdelek je 3 leta od dneva poteka garancije.

Ta izdelek in njegove dele je potrebno odstraniti na okolju prijazen način. Uporabite podjetja za odvoz odpadkov, če to ni mogoče pa stopite v stik z najbližjim pooblaščenim serviserjem.

2 VARNOST

Pred vgradnjo in zagonom črpalke skrbno preberite ta navodila, ki so namenjena vam v pomoč pri montaži, uporabi in vzdrževanju, ter upoštevajte varnostne napotke. Vgradnja in priklop črpalke morata biti izvedena v skladu z lokalnimi predpisi in standardi. Črpalke lahko servisira, vgrajuje in vzdržuje samo primerno usposobljeno osebje.

Neupoštevanje varnostnih navodil in standardov lahko povzroči poškodbe oseb in izdelkov, ter lahko pomeni izgubo pravice do povrnitve škode. Varnostne funkcije črpalke so zagotovljene le, če je črpalka vzdrževana po navodilih proizvajalca in uporabljena znotraj dovoljenega delovnega območja.

3 TEHNIČNE SPECIFIKACIJE

3.1 STANDARDI, ZAŠČITE IN SPECIFIKACIJE

Črpalke so narejene v skladu s sledečimi standardi in zaščitami:

Razred zaščite:

IP44
Izolacijski razred:
180 (H)
Motorna zaščita:
Vgrajena termična zaščita

Vgradne specifikacije		
Tip črpalke	Dovoljeni tlaki	Vgradne dolžine med prirobnicami[mm]
NMT(D) MAX (C) 32-120	PN 6 ali 10	220
NMT(D) MAX (C) 40-40		220/250
NMT(D) MAX (C) 40-80		220/250
NMT(D) MAX (C) 40-120		220/250
NMT(D) MAX (C) 40-180		220/250
NMT(D) MAX (C) 50-40		280
NMT(D) MAX (C) 50-80		280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 65-40		340
NMT(D) MAX (C) 65-80		340
NMT(D) MAX (C) 65-120		340
NMT(D) MAX (C) 80-40	PN 6	360
NMT(D) MAX (C) 80-40	PN 10	360
NMT(D) MAX (C) 80-80	PN 6	360
NMT(D) MAX (C) 80-80	PN 10	360

3.2 PRETOČNI MEDIJ

Za normalno delovanje črpalke je potrebno zagotoviti medij, ki je čista voda ali mešanica čiste vode in sredstva proti zamrzovanju, ki mora biti primerno za sistem centralnega ogrevanja. Voda mora ustrezati standardu o kvaliteti vode VDI 2035. Medij mora biti brez agresivnih ali eksplozivnih dodatkov, brez primesi mineralnih olj in trdih ali vlaknenih delcev. Črpalke ne smemo uporabljati za črpanje gorljivih, eksplozivnih medijev ali v eksplozivni atmosferi.

3.3 TEMPERATURA IN VLAŽNOST

	Dovoljene temperature okolice in medija		
Temperatura okolice $\left[{ }^{\circ} \mathrm{C}\right]$	Temperatura medija [$\left.{ }^{\circ} \mathrm{C}\right]$		Relativna vlaga v okolju
mo 25	$\mathbf{m i n}$	110	
30	-10	100	
35	-10	90	$<95 \%$
40	-10	80	

- Obratovanje izven priporočenih pogojev lahko skrajša življenjsko dobo in izniči garancijo.

3.4 ELEKTRIČNE SPECIFIKACIJE

```
3.4.1 TOK, NAPETOST IN MOČ
```

Električne lastnosti					
Tip črpalke	Priključna napetost	Nazivna moč [W]	Nazivni tok [A]	Maksima Ini tok $\left(I_{\text {maks }}\right)[A]$	Zagon
NMT(D) MAX (C) 32-120		370	1.8	4.3	
NMT(D) MAX (C) 40-40		110	1	4.3	
NMT(D) MAX (C) 40-80		270	1.3	4.3	
NMT(D) MAX (C) 40-120		480	2.3	4.3	
NMT(D) MAX (C) 40-180		680	3.4	4.3	
NMT(D) MAX (C) 50-40	230 VAC $\pm 15 \%$,	160	1.3	4.3	
NMT(D) MAX (C) 50-80	$47-63 \mathrm{~Hz}$	370	1.7	4.3	Vgrajeno je
NMT(D) MAX (C) 50-120	Črpalke delujejo tudi	560	2.5	4.3	vezje za
NMT(D) MAX (C) 50-120	pri manjši napetosti z	830	3.6	4.3	mehki zagon
NMT(D) MAX (C) 65-40	zmanjšano močjo	230	1.1	4.3	iz omrežja.
NMT(D) MAX (C) 65-80	($\mathrm{P}=\mathrm{I}_{\text {maks }}{ }^{*} \mathrm{U}$)	560	2.6	4.3	
NMT(D) MAX (C) 65-120		810	3.5	4.3	
NMT(D) MAX (C) 80-40		390	1.8	4.3	
NMT(D) MAX (C) 80-40		390	1.8	4.3	
NMT(D) MAX (C) 80-80		800	3.5	4.3	
NMT(D) MAX (C) 80-80		800	3.5	4.3	

3.5 SPECIFIKACIJE KOMUNIKACIJE

Funkcije komunikacije so opisane v poglavju: Nadzor in funkcije. Vse funkcije so na voljo samo vizvedenki NMT(D) MAX C. Podrobnejše specikacije uporabljenih protokolov so opisane v navodilih komunikaciji.

3.5.1 ANALOGNI VHODI IN IZHODI

Na voljo samo v črpalkah NMT(D) MAX C.
Priključki se lahko obnašajo kot vhodi ali izhodi, odvisno od nastavitve. V črpalkah so na voljo trije priključki SET1, SET2 in SET3.

	Električne lastnosti	
Vhodna napetost	$-1-32 \mathrm{VDC}$	Ko je uporabljen kot vhod
Izhodna napetost	$0-12 \mathrm{VDC}$	Ko so uporabljeni kot izhod. 5 mA maks. obremenitve na posamezni izhod.
Vhodna impedanca	$\sim 100 \mathrm{k} \Omega$	0.5 mA dodatne obremenitve za večino konfiguracij.
Vhodni ponor tok	$0-33 \mathrm{~mA}$	Skupni ponor na COM, če je nastavljen na izhod.
Galvanska izolacija		Do omrežne napetosti 4 kV @ 1 s, 275 V trajno

3.5.2 RELEJSKI IZHOD

Na voljo samo v črpalkah NMT(D) MAX C.

	Električne lastnosti
Maksimalni dovoljeni tok	3 A
Izhodna napetost	$230 \mathrm{VAC}, 32 \mathrm{VDC}$

3.5.3 ETHERNET

Na voljo samo v črpalkah NMT(D) MAX C.

	Električne lastnosti	
Ethernet priključek	RJ-45, 10BASE-T, $10 \mathrm{Mbit} / \mathrm{s}$ povezava.	
Način povezave in storitve	-	Web server (port 80)
	-	Nadgradnja programske opreme preko web vmesnika
Privzeti IP naslov	-	Možnost Modbusa RTU preko TCP/IP
Ethernet vizualna diagnostika	LED1	Počasi utripajoča, ko je modul prižgan, neprekinjeno prižgana ko je povezava
	LED2	vzpostavljena.

3.5.4 MODBUS

Na voljo samo v črpalkah NMT(D) MAX C.

	Modbus specifikacija	
Protokol	Modbus RTU	2+1 pinov. Glej navodilo NMTC modula.
Modbus priključek Modbus standard prenosa	Vzmetna sponka	RS-485

4 VGRADNJA ČRPALKE

4.1 VGRADNJA V CEVOVOD

Črpalka je med transportom zaščitena z dvojno škatlo. Črpalko je mogoče dvigniti iz škatle z ročajema v notranjosti ali, da črpalko primete za hladilna rebra na zadnji strani električne omarice.

Črpalka je namenjena za vgradnjo na priključne prirobnice, pri čemer uporabite za to namenjene vijake. Priključni kombinirani prirobnici sta narejeni, da lahko črpalko priključimo v cevovod z PN6 ali PN10 nominalnega tlaka. Zaradi kombiniranih prirobnic je potrebno pri vgradnji uporabiti podložke na strani črpalke.

Za delovanje črpalke z minimalnimi vibracijami in šumi, je potrebno črpalko vgraditi v cevovod tako, da je os črpalke 1-1 vodoravna. V ravnem delu cevovoda dolžine najmanj 5-10 D ($\mathrm{D}=$ nazivni premer cevi črpalke) od kolena, kot je prikazano na sliki 1.

Želeno lego elektronike lahko dosežemo s sukanjem hidravličnega ohišja glede na motor črpalke (dovoljene lege na slikah 2 in 3). Črpalka je s štirimi vijaki pritrjena na hidravlično ohišje. Če jih odvijemo, lahko spremenimo lego glave črpalke glede na hidravlično ohišje. Pri ponovnem privitju elektromotornega dela črpalke na hidravlično ohišje, je potrebno paziti na pravilno lego tesnila med črpalko in hidravličnim ohišjem (slika 4).

Okolica črpalke naj ne bo v direktnem stiku z bližnjimi predmeti, ter naj bo suha in osvetljena po potrebi. Tesnjenje črpalke preprečuje vstop vode in prahu iz okolice, kot določa IP razred. Poskrbite, da je pokrov ustrezno nameščen in uvodnice tesnijo. Črpalka bo dosegla najdaljšo življenjsko dobo pri sobni temperaturi okolice in zmerni temperaturi medija. Dolgotrajno delovanje pri mejnih pogojih lahko pospeši obrabo črpalke. Staranje pospešujeta predvsem visoka temperatura in visoka delovna moč.

- Nepravilna priključitev ali preobremenitev lahko črpalko izključi ali povzroči trajno škodo.
- Črpalke so težke, če je potrebno, si priskrbite pomoč,
- Črpalke ne smemo vgraditi v varnostne cevovode,
- Črpalko ne smete uporabiti kot držalo pri varjenju cevnega sistema, saj se lahko poškoduje!
- V kolikor tesnilo med elektro-motornim delom črpalke in hidravličnim ohišjem ne bo pravilno nameščeno, črpalka ne bo tesna in obstaja nevarnost poškodb črpalke,
- Na stiku ohišja elektromotorja in hidravličnega ohišja se nahajajo odprtine za odvod kondenza, ne smejo biti blokirane (ne smejo biti toplotno izolirane), ker to lahko moti hlajenje motorja ali odvajanje kondenzirane vode, slika 1,
- Vroč medij predstavlja nevarnost opeklin. Tudi motor črpalke lahko doseže človeku nevarno temperaturo.

4.2 ELEKTRIČNI PRIKLOP

Električni priklop se izvede z priložnim konektorjem, ki ima priložene tudi navodila.
Črpalka ima vgrajeno tokovno varovalko, temperaturno zaščito in osnovno zaščito pred prenapetostjo. Ne potrebuje dodatnega termičnega zaščitnega stikala. Priključni vodniki naj zadoščajo za trajno obremenitev nazivne moči črpalke in naj bodo primerno varovani. Nujna je uporaba ozemljitvenega vodnika, ki naj bo priključen prvi. Ozemljitev zadošča le za varovanje črpalke. Cevovodi naj bodo ozemljeni ločeno.

- Priključitev črpalke mora izvesti usposobljena in kvalificirana oseba,
- Priključitev priključnega kabla ne sme potekati na način, da je v stiku z ohišjem aparata zaradi previsokih temperatur na ohišju,
- Aparat lahko uporabljajo otroci starejši od 8. leta in osebe z zmanjšanimi fizičnimi, senzoričnimi in mentalnimi sposobnostmi ter tisti s premalo izkušnjami in znanja, le če imajo ustrezen nadzor ali so bili o tem ustrezno poučeni glede varne uporabe in razumevanja nevarnosti ob uporabi.
- Otroci se ne smejo igrati z aparatom.
- Čiščenje in vzdrževanje aparata ne smejo izvajati otroci brez nadzora.

4.3 PRIKLOP KOMUNIKACIJE

Na voljo samo v črpalkah NMT(D) MAX C.

4.3.1 ANALOGNI VHODI IN IZHODI

Podrobnejši opis je na voljo v navodilih komunikacijskega modula.

4.3.2 RELEJSKI IZHOD

Podrobnejši opis je na voljo v navodilih komunikacijskega modula.

4.3.3 ETHERNET

Podrobnejši opis je na voljo v navodilih komunikacijskega modula.

4.3.4 MODBUS

Podrobnejši opis je na voljo v navodilih komunikacijskega modula

5 NASTAVITEV IN DELOVANJE

5.1 NADZOR IN FUNKCIJE

Črpalko je možno upravljati preko zaslona, NMT(D) MAX C pa še preko 10 stopenjskega preklopnega stikala, analognih vhodov, modbus in Ethernet priključka.

- Zaslon nam nudi nastavitev in pregled nad načinom delovanja črpalke, vrednostmi in statusom črpalke(prižgano/ ugasnjeno),
- 10 stopnejsko preklopno stikalo, omogoča spreminjanje nastavitev relejskega izhoda in nastavitev odziva analognih vhodov/izhodov, ter ponastavitvi komunikacijskega dela črpalke,
- Analogni vhodi, ki omogočajo nadzor nad črpalko (zagon, stop, maksimalna krivulja, minimalna krivulja, 0$10 \mathrm{~V}, 4-20 \mathrm{~mA} . .$.),
- Analogni izhodi, ki omogočajo pregled nad črpalko (napake, obrati, delovanje, pretok, višina),
- Relejski izhod signalizira status črpalke,
- Ethernet povezava omogoča nadzor nad vsemi parametri in nastavitvami (vrednosti, analognimi vhodi in izhodi, pregled napak...),
- Modbus povezava omogoča nadzor nad vsemi parametri in nastavitvami (vrednosti, analognimi vhodi in izhodi, pregled napak...).

Več signalov lahko vpliva na delovanje črpalke. Zaradi tega imajo različne možnosti nastavljanja črpalke različne prioritete, ki so prikazane v spodnji tabeli. Če sta dve funkciji hkrati aktivni ima prednost tista, ki ima višjo prioriteto.

Prioriteta	Kontrola preko zaslona in ethernet nastavitve	Zunanji signali ${ }^{1}$	Modbus kontrola
1	Stop (OFF)		
2	Aktivni nočni režim ${ }^{2}$		
3	Maks. vrtljaji (Hi)		
4		Minimalna krivulja	
5		Maks. vrtljaji (Hi) ${ }^{3}$	
6			Refop
7			
8			
9	Referenčnčna točka		

Primeri:

- Stop na zaslonu črpalke bo ustavil črpalko, ne glede na zunanje signale in referenčne točke.
- Če je zunanji start neaktiven, se črpalka preko Modbus komunikacije ne more zagnati, ampak se lahko nastavi na maksimalne vrtljaje na zaslonu črpalke.

[^0]
5.1.1 ZASLON

Z zaslonom se nastavlja in pregledujeme različne načine delovanja, parametre, črpalko izklopimo/vklopimo ter pregledujemo napake. Za delovanje načinov delovanja črpalke si poglejte poglavje 5.2 Delovanje.

5.1.1.1 FUNKCIJE TIPK

$\Theta_{\text {Tipka }}$

Kratek pritisk:

- Prehajanje med parametri navzdol, ko ne spreminjamo vrednosti parametrov,
- Prehajanje med režimi navzdol, ko imamo vključeno izbiranje režimov,
- Spreminjanje vrednosti navzdol, ko nastavljamo vrednosti parametrov.

Dolgi pritisk:

- 3 sekunde skupaj z dolgim pritiskom \oplus, vključimo nočni režim,
- 3 sekunde skupaj z dolgim pritiskom \oplus, zaklenemo upravljenje črpalke,
- 5 sekund ugasnemo črpalko,
- 5 sekund skupaj z dolgim pritiskom tipk \oplus in \oplus ponastavi črpalko na tovarniške nastavitve.

$\Theta_{\text {Tipka }}$

Kratek pritisk:

- Potrdimo trenutno nastavljeno vrednost parametra in način delovanja.

Dolgi pritisk:

- 3 sekunde sprožimo prehajanje med režimi,
- 3 sekunde skupaj z dolgim pritiskom Θ, zaklenemo upravljenje črpalke,
- 5 sekund skupaj z dolgim pritiskom tipk Θ in \oplus ponastavi črpalko na tovarniške nastavitve.
$\oplus_{\text {tipka }}$

Kratek pritisk:

- Prehajanje med parametri navzgor, ko ne spreminjamo parametrov,
- Prehajanje med režimi navzgor, ko imamo vključeno izbiranje režimov,
- Spreminjanje vrednosti navzgor, ko nastavljamo vrednosti parametrov.

Dolgi pritisk:

- 3 sekunde skupaj z dolgim pritiskom Θ, vključimo nočni režim,
- 5 sekund skupaj z dolgim pritiskom tipk Θ in \odot ponastavi črpalko na tovarniške nastavitve.

5.1.1.2 VKLOP IN IZKLOP

Ko črpalko prvič priklopimo na omrežje, začne ta obratovati z tovarniškimi nastavitvami avtomatskega načina.
Ob nadaljnjih vklopih bo črpalka začela obratovati z zadnjimi nastavitvami, ki so bile nastavljene ob njenem izklopu.

Za izklop črpalke držimo pritisnjeno tipko e za 5 sekund, dokler se na zaslonu ne izpišejo znaki OFF. Ko je črpalka ugasnjena, je na njenem številčnem prikazu prikazan znak OFF.

Za ponovni vklop črpalke pritisnemo tipko Θ za kratek čas.

5.1.1.3 NASTAVLJANJE NAČINOV DELOVANJA IN PARAMETROV ČRPALKE

Če hočemo spremeniti način delovanja črpalke držimo tipko $\oplus 3$ sekunde in nato $s \oplus$ ali Θ tipko izberemo način delovanja v katerem hočemo, da črpalka deluje. Izbiro nato potrdimo z tipko @. Po potrditvi režima se bo avtomatsko sprožila tudi izbira parametra (razen avtomatski način), ki ga lahko nastavljamo pri izbranem načinu delovanja (glej posamezni način). Parametru nastavimo vrednost $\mathrm{s} \oplus$ in Θ tipko ter jo potrdimo stipko Θ, ali pa potrdimo privzeto nastavitev. Med delovanjem črpalke v določenem načinu lahko pregledujemo vrednosti parametrov $\mathrm{s} \oplus$ in Θ tipko. Parameter, ki ga lahko v načinu nastavljamo (glej posamezni način), izberemo $s \oplus$ tipko ter mu nastavimo vrednost s \oplus in Θ tipko. Nastavljeno vrednost potrdimo z tipko Θ.

5.1.1.4 ZAKLEP UPRAVLJANJA ČRPALKE

Če želimo zakleniti ali odkleniti upravljanje črpalke, držimo tipke Θ in $\odot 3$ sekunde. Ko je zaklenjeno upravljanje črpalke, uporabnik ne more nastavljati parametrov in načinov delovanja črpalke. Ko je črpalka zaklenjena je možen vklop in izklop črpalke, pregledovanje parametrov črpalke, ter ponastavitev na tovarniške nastavitve, ki tudi odklene upravljanje črpalke.

5.1.2 10 STOPENSKO PREKLOPNO STIKALO

Na voljo samo v črpalkah NMT(D) MAX C.
Na črpalki je rotacijsko stikalo za izbiro načina delovanja modula. Lahko ga zavrtimo z ploščatim izvijačem, tako da puščico usmerimo na želeno vrednost.

Vrednost stikala se prebere ob vklopu črpalke! Podrobnejša navodila o delovanja načinov so na voljo v navodilih za komunikacijski del.

Izbrana vrednost	Funkcija	Opis
0	Prosta konfiguracija	Funkcije terminala lahko nastavimo preko spletnega vmesnika.
1	Način 1	SET1 = RUN vhod SET2 = MAX vhod SET3 = FB (10.5 V) izhod, uporablja se lahko za napajanje RUN in MAX vhoda. Zunanje napetosti se lahko tudi uporabljajo. RS-485 = Modbus komunikacija.
2	Način 2	SET1 = RUN vhod SET2 $=$ SPEED vhod SET3 $=$ FB (10.5 V) izhod, uporablja se lahko za napajanje RUN in MAX vhodov. Zunanji 5-24 V vir se lahko tudi uporablja. RS-485 = Modbus komunikacija
$3 . .5$	Rezervirani	Rezervirano za bodoče načine, na želje strank.
6	Pokaže nastavitev relejska izhoda	LED1 in LED2 pokažeta nastavitev relejskega izhoda.
7	Spremeni nastavitev relejskega izhoda	Spremeni nastavitev relejskega izhoda. Izhod se spremeni, ko se črpalka odklopi in priklopi na električno omrežje v zaporedju 0->1, 1->2, 2->0. LED1 in LED2 pokažeta nastavitev relejskega izhoda.
8	Ponastavitev dvojčka na tovarniške nastavitve	Enako kot način 9, z izjemo da je IP naslov modula nastavljen na: 192.168.0.246 IP naslov dvojčka pa je 192.168.0.245
9	Tovarniška ponastavitev	Ta način ponastavi NMTC modul na privzete tovarniške nastavitve. Modul se bo ponastavil, ko se črpalko odklopi in priklopi iz električnega omrežja. Opomba: - Izključite vse povezave na SET1, SET2 in SET3, ko uporabljate ta način, da preprečite poškodbe krmilnika. Na SET1, SET2, SET3 bo izhodna testna napetost $10 \mathrm{~V}, 7 \mathrm{~V}$ in 5 V . Port RS-485 je aktivno voden. Rele bo preklapljal stanja. To se uporablja za namene testiranja vezja. - Izključite tudi vse ostale povezave na modul, da preprečite poškodbe krmilnikov.

5.1.3 ANALOGNI VHODI IN IZHODI

Na voljo samo v črpalkah NMT(D) MAX C.
Na črpalki so na voljo trije analogni vhodi in izhodi, ki imajo lahko različne funkcije. Nastavi se jih preko spletnega vmesnika (stran »pump«) ali modbus vmesnika.

Vhod/Izhod	Funkcija	Opis funkcije
SET1	Run[Privzeto-Način 1]	Vklop/izklop črpalke. Privzeto aktivirano z povezavo s SET3.
SET2	Max/Min[Privzeto-	Nastavi črpalko na maksimalne nastavitve, ko je aktiven SET1. Način 1]
Nastavi črpalko na minimalne nastavitve, ko ni aktiven SET1.		

5.1.4 RELEJSKI IZHOD

Na voljo samo v črpalkah NMT(D) MAX C.

Nastavitev	Opis
Zagon	Sporoči, ko črpalka obratuje
Operacija	Sporoči, ko je črpalka v stanju pripravljenosti
Napaka[Privzeto]	Sporoči, ko se pojavi napaka na črpalki.
Brez funkcije	Ne sporoča ničesar.
Stalno vključen	Rele stalno sklenjen.

5.1.5 ETHERNET

Na voljo samo v črpalkah NMT(D) MAX C.
Črpalka ima vgrajen spletni strežnik, preko katerega lahko dostopamo do črpalke direktno ali preko ethernet omrežja. Privzeti naslov preko katerega se dostopa do črpalke je »nmtpump/« ali 192.168.0.245/

Spletni strežnik uporablja HTML in XML omogoča pregledovanje in nastavljaje

- Način delovanja črpalke,
- Parametri črpalke (moč, obrati, tlačna višina, pretok),
- Nastavitve relejskega izhoda,
- Nastavitve zunanje kontrole,
- Trenutna in prejšnja napaka, statistike črpalke (poraba moči in ostalo).

5.1.6 MODBUS

Na voljo samo v črpalkah NMT(D) MAX C.
Črpalka ima vgrajen modbus klient, preko katerega lahko dostopamo do črpalke preko komunikacijskega standarda RS 485.

Preko modbusa je možno pregledovat in nastavljat:

- Način delovanja črpalke,
- Parametri črpalke (moč, obrati, tlačna višina, pretok),
- Nastavitve relejskega izhoda,
- Nastavitve zunanje kontrole,
- Trenutna in prejšnja napaka, statistike črpalke (poraba moči in ostalo).

5.1.7 NASTAVITEV ČRPALKE NA TOVARNIŠKE NASTAVITVE

Za povrnitev tovarniških nastavitev črpalke je potrebno hkrati držati pritisnjene vse tri tipke 5 sekund. Črpalka se tako nastavi na avtomatski način delovanja, izbriše nastavljene vrednosti višine in vrtljajev in odklene upravljanje črpalke (če je bila zakljenjena).

Za povrnitev tovarniških nastavitev komunikacijskega dela črpalke je potrebno:

1. Črpalko ugasniti iz napajanja,
2. 10 stopenjsko preklopno stikalo nastaviti na številko 9^{4} (8 , če hočemo nastaviti levi dvojček),
3. Črpalko prižgati in ponovno ugasniti,
4. 10 stopenjsko preklopno stikalo nastaviti na številko 1 ,
5. Črpalko prižgati.

Komunikacijski del črpalke se tako nastavi na tovarniške nastavitve.

5.2 DELOVANJE

Črpalka lahko deluje v 5 različnih načinih. Nastavimo jo na najbolj primeren način v odvisnosti od sistema vaterem črpalka deluje.
Načini delovanje črpalke:

- Avtomatski način (tovarniška nastavitev),
- Proporcionalni tlak,
- Konstantni tlak,
- Konstantni obrati-hitrost,
- Kombiniran način (Na voljo samo v črpalkah NMT(D) MAX C).

[^1]
(A)
 Avtomatski način

V avtomatskem režimu črpalka samodejno nastavlja tlak pri katerem deluje, glede na stanje hidravličnega sistema. S tem črpalka sama najde najbolj optimalno točko delovanja.
Ta režim delovanja se priporoča za uporabo v večini sistemov.
Parametrov ne moremo nastavljati, lahko jih le pregledujemo.

(t)
Proporcionalni tlak
Črpalka vzdržuje tlak, ki je odvisen od trenutnega pretoka. Tlak je enak nastavljenemu tlaku (Hset na risbi) pri maksimalni moči, pri pretoku 0 pa je enak HQ \% (privzeti HQ \% je 50\%)nastavljenega tlaka. Vmes se tlak spreminja linearno v odvisnosti od pretoka. V reguliranem načinu lahko črpalki nastavljamo le tlak (Hset na risbi). Ostale
 parametre se lahko pregleduje.

Konstantni tlak maksimalne moči, kjer se prične tlak zniževati.
Pri konstantnem tlaku, črpalki lahko nastavljamo le tlak (Hset na risbi), katerega bo črpalka vzdrževala. Ostale parametre se lahko pregledujeme.

Konstantni obrati-hitrost

Črpalka deluje pri trenutno nastavljenih vrtljajih (RPMset na risbi). Pri konstantnih vrtljajih črpalki lahko nastavljamo le vrtljaje pri katerih bo obratovala. Ostale parametre se lahko pregledujeme.

Kombiniran način

V temu načinu delovanja je možno črpalko nastaviti več nastavitev hkrati. Možno je
 nastaviti omejitev vrtljajev, višine in naklon QH krivlje črpalke. V temu načinu delovanja ne sveti nobeden indikator načina delovanja.

(J) Nočni režim

Ko črpalka deluje v nočnem režimu, avtomatsko preklaplja med trenutno izbrano delovno krivuljo v režimu in nočno krivuljo. Preklop je odvisen od temperature medija v sistemu.
Ko je nočni režim pripravljen na delovanje, njegova ikona sveti in črpalka deluje v izbrani delovni krivulji režima. Ko črpalka zazna padec temperature medija za $15-20^{\circ} \mathrm{C}$ (približno v času dveh ur), ikona prične utripati in črpalka preklopi na nočno krivuljo. Ko se temperatura medija ponovno dvigne, ikona preneha utripati in črpalka preide nazaj na delovno krivuljo vizbranem delovnem režimu.

Nočni režim lahko deluje le v kombinaciji z zgoraj opisanimi režimi in ni samostojni režim delovanja.

5.2.1 DELOVANJE DVOJNIH ČRPALK

Črpalke imajo dvojno hidravlično ohišje z vgrajeno nepovratno loputo, ki se samodejno obrača glede na tok medija, ter dva ločena motorja. Črpalke imajo medsebojno komunikacijo, preko ethernet povezave (Na voljo samo pri NMT(D) MAX C).Pri uporabi, ne priporočamo uporabe nočnega režima delovanja črpalke.

Črpalki delujeta lahko na več načinov, za medsebojne preklope črpalk skrbi komunikacijski del:

- Izmenično delovanje[tovarniško nastavljeni način] - Ena črpalka deluje medtem ko druga miruje. Črpalki samodejno izmenjata delovanje na vsakih 24 ur ali ko pride na eni črpalki do napake.
- Rezervno delovanje - Ena črpalka stalno deluje, med tem ko druga stalno miruje. Ob napaki na delujoči črpalki se bo samodejno vklopila mirujoča črpalka. Ta način se vklopi tako, da črpalko ki hočemo da miruje, ugasnemo da pridržimo tipko \ominus za 5 sekund.
- Vzporedno delovanje - obe črpalki delujeta istočasno z istimi nastavitvami konstantnega tlaka. To delovanje se uporablja v primerih, kjer je zahteva po večjih pretokih, katerih enojna črpalka ne more doseči. Ko prva črpalka pride do svoje omejitve, se vklopi druga črpalka in zagotovi potrebno moč, da dosežemo večji pretok.
Ta način se vključi, na obeh črpalkah, ko nastavimo enako nastavitev konstantnega tlaka.

Pri črpalkah NMT(D) MAX za preklaplanje med črpalkami skrbi uporabnik.

6 PREGLED MOŽNIH NAPAK IN REŠITEV

Če bo na črpalki prišlo do okvare, se bo na njenem zaslonu izpisala napaka, ki povzroča okvaro.
Napake na zaslonu se prikažejo v sledečem načinu:

Skupina napake(X)	Opis napake	Možni vzrok in rešitev
1	Nizka obremenitev- suhi tek	V črpalki ni medija. Preverite, če je v sistemu medij
2	Preobremenitev motorja	Prevelika tokovna obremenitev ali blokirani rotor. Če se napaka ponavlja preverite, če se rotor prosto vrti.
3	Vroč motor	Motor črpalke je dosegel previsoko temperaturo in se je preventivno ustavil. Ko se bo ohladil, se bo ponovno samodejno zagnal.
4	Napaka elektronike	Zaznana je bila napaka elektronike. Črpalka lahko še deluje, a potrebuje servis
5	Okvara motorja/statorja	Če bo na črpalki prišlo do okvare, se bo na njenem zaslonu izpisala napaka, ki povzroča okvaro.

Servisna koda (Y) je namenjena vzdrževalcem in serviserjem.
Če je črpalka neodzivna, jo je potrebno izključiti iz električnega omrežja in nazaj vključiti.
7 ODKRIVANJE NAPAK

7.1 KODE NAPAK

Koda napake se pojavi na zaslonu črpalke in v pripadajočem Modbus registru. Z to kodo napake si lahko pomagamo pri diagnozi okvare.

Koda napake	Opis	Možni vzrok
E1x	Napaki obremenitve	Zaznana nizka obremenitev. Črpalka ni v mediju.
E10 (drY)	Nizka obremenitev	Okvara motorja ali preveč viskozen medij.
E11	Visoka obremenitev	
E2x	Zaščite aktivne	Elektronika prevroča in moč je bila zmanjšana E22 (hot)
E23a 2/3 polne moči.		

English (EN) Installation and operating manual

TABLE OF CONTENTS
1 General information 23
1.1 Uses 23
1.2 Pump labeling 23
1.3 Pump maintenance, spare parts and decommissioning 24
2 Safety 24
3 Tehnical specifications 24
3.1 Standards and protections 24
3.2 Pump medium 25
3.3 Temperatures and ambient humidity 25
3.4 Electrical specifications 25
3.5 Communication specifications 25
4 Pump installation 28
4.1 Installation into pipe lines 28
4.2 Electrical installation 29
4.3 Communication installation 29
5 Setup and operation 30
5.1 Control and functions 30
5.2 Operation 36
6 Error and Troubleshooting 38
7 Fault finding 38
7.1 Error codes 38
Pump curves are on page 150.
Subject to alterations!
Symbols used in this manual:

Warning:
Safety precautions which, if ignored could cause personal injury or machinery damage

Notes:

Tips that could ease pump handling.

1 GENERAL INFORMATION

1.1 USES

The NMT (new motor technology) circulating pumps are used for the transfer of liquid medium within systems for hot-water heating, air-conditioning and ventilation. They are designed as single or twin variable-speed pumping aggregates where the speed is regulated by electronic device. The pump constantly measures pressure and flow and adjusts the speed according to the set pump mode.
There are two versions of pumps: pumps NMT(D) MAX and NMT(D) MAX C. NMT(D) MAX C has the option of remote control and monitoring using Ethernet, Modbus, analog inputs and outputs, and relay control. Pumps NMT(D) MAX have the option for acquisition of additional NMTC module, which gives pump communication options of NMT(D) MAX C. Pumps MAX C have detailed instructions on communicating explained in the separate instructions for NMTC module, which are located on the website: "http: // imp -pumps.com/en/documentation/. "Or through the QR code:

The main purpose of the twin pump is uninterrupted operation if one of the pumps fails. Common hydraulic housing is equipped with a change-over flap and two pump heads, separately connected to the electrical grid.

1.2 PUMP LABELING

1.3 PUMP MAINTENANCE, SPARE PARTS AND DECOMMISSIONING

Pumps are designed to operate without maintenance for several years. Spare parts will be available for at least 3 years from the warranty period expiration.

This product and its components must be disposed of in an environmentally friendly manner. Use waste collection services, if this is not possible, contact the nearest IMP Pumps Service or authorized repairers.

2 SAFETY

These instructions should be studied carefully before installing or operating the pump. They are meant to help you with installation, use and maintenance and to increase your safety. Installation should only be performed with regards to local standards and directives. Only qualified personnel should maintain and service these products.

Failure in following these instructions can cause damage to the user or product and can void warranty. Safety functions are only guaranteed if the pump is installed, used and maintained as described in this manual.

3 TEHNICAL SPECIFICATIONS

3.1 STANDARDS AND PROTECTIONS

Pumps are made in according to the following standards and protections:

Protection class:

IP44
Insulation class:
180 (H)
Motor protection:
Thermal - built in

Installation specification		
Pump type	Nominal pressure	Fitting length [mm]
NMT(D) MAX (C) 32-120		220
NMT(D) MAX (C) 40-40		220/250
NMT(D) MAX (C) 40-80		220/250
NMT(D) MAX (C) 40-120		220/250
NMT(D) MAX (C) 40-180		220/250
NMT(D) MAX (C) 50-40	PN6 and 10	280
NMT(D) MAX (C) 50-80	PN6 and	280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 65-40		340
NMT(D) MAX (C) 65-80		340
NMT(D) MAX (C) 65-120		340
NMT(D) MAX (C) 80-40	PN 6	360
NMT(D) MAX (C) 80-40	PN 10	360
NMT(D) MAX (C) 80-80	PN 6	360
NMT(D) MAX (C) 80-80	PN 10	360

3.2 PUMP MEDIUM

Pump medium can be pure water or a mixture of pure water and glycol, which is appropriate for central heating system. Water must meet water quality standard VDI 2035. The medium must be free from aggressive or explosive additives, free from mixtures of mineral oils and solid or fibrous particles. The pump should not be used for pumping flammable, explosive media and in an explosive atmosphere.

3.3 TEMPERATURES AND AMBIENT HUMIDITY

Permitted ambient and media temperature:			
Ambient temperature$\left[{ }^{\circ} \mathrm{C}\right]$	Medium temperature [${ }^{\circ} \mathrm{C}$]		re ambient humidity
	min.	max.	Relative ambient humidity
Up to 25	-10	110	
30	-10	100	
35	-10	90	<95\%
40	-10	80	

- Operation outside recommended conditions may shorten pump lifetime and void the warranty.

3.4 ELECTRICAL SPECIFICATIONS

3.4.1 CURRENT, VOLTAGE AND POWER RATINGS

Electrical ratings					
Pump	Rated voltage	Rated power [W]	Rated current [A]		Startup
NMT(D) MAX (C) 32-120		370	1.8	4.3	
NMT(D) MAX (C) 40-40		110	1	4.3	
NMT(D) MAX (C) 40-80		270	1.3	4.3	
NMT(D) MAX (C) 40-120		480	2.3	4.3	
NMT(D) MAX (C) 40-180		680	3.4	4.3	
NMT(D) MAX (C) 50-40	$230 \mathrm{VAC} \pm 15 \%$,	160	1.3	4.3	
NMT(D) MAX (C) 50-80	$47-63 \mathrm{~Hz}$	370	1.7	4.3	
NMT(D) MAX (C) 50-120	Pumps can operate	560	2.5	4.3	
NMT(D) MAX (C) 50-120	at reduced voltage	830	3.6	4.3	
NMT(D) MAX (C) 65-40	with limited power	230	1.1	4.3	
NMT(D) MAX (C) 65-80	($\mathrm{P}=\mathrm{I}_{\max }{ }^{*} \mathrm{U}$)	560	2.6	4.3	
NMT(D) MAX (C) 65-120		810	3.5	4.3	
NMT(D) MAX (C) 80-40		390	1.8	4.3	
NMT(D) MAX (C) 80-40		390	1.8	4.3	
NMT(D) MAX (C) 80-80		800	3.5	4.3	
NMT(D) MAX (C) 80-80		800	3.5	4.3	

3.4.2 COMMUNICATION SPECIFICATIONS

To see communication functions see chapter :5.1 Control and functions. Some of the functions are available only on NMT(D) MAX C. Detailed specifications about used protocols are described in communications manual.

3.4.3 ANALOG INPUTS AND OUTPUTS

Only available on NMT(D) MAX C.
Connections can be used either as inputs or outputs, depending on how we set it. Pump has 3 connectors: SET1, SET2 and SET3.

		Electrical properties
Input voltage	$-1-32 \mathrm{VDC}$	When used as input.
Output voltage	$0-12 \mathrm{VDC}$	When used as an output. Max. 5 mA load on individual output.
Input impedance	$\sim 100 \mathrm{k} \Omega$	0.5 mA additional load for most configurations.
Input sink current	$0-33 \mathrm{~mA}$	Common sink on COM, if used as output.
Galvanic isolation		Voltage 4 kV up to $1 \mathrm{~s}, 275 \mathrm{~V}$ permanent.
3.4.4 RELAY OUTPUT		

Available only on NMT(D) MAX C pumps.

	Electrical properties
Rated current	3 A
Maximum voltage	230 VAC, 32 VDC

3.4.5 ETHERNET

Available only on NMT(D) MAX C pumps.

	Electrical properties	
Connector	RJ-45, 10BASE-T, 10 Mbit s.	
	-	Web server (port 80)
Services	-	Software update through web interface.
	-	Option of Modbusa RTU through TCP/IP
Default IP address	192.168.0.245 (192.168.0.246 for right pump)	
Ethernet visual diagnostics	LED1	Slowly blinking if module is on. Lights up when the connection is established.
	LED2	

3.4.6 MODBUS

Available only on NMT(D) MAX C pumps.

Modbus specification		
Data protocol	Modbus RTU	
Modbus connector	Screwless terminals	2+1 pins. See NMTC module manual.
Modbus connection type	RS-485	
Modbus wire configuration	Two-wire + common	Conductors: A, B and COM (Common). See section See NMTC module manual.
Communication transceiver	Integrated, 1/8 of standard load	Connect either via passive taps or daisy chain.
Maximum cable length	1200 m	See section See NMTC module manual.
Slave address	1-247	Default is 245, settable over Modbus. See NMTC module manual.
Line termination	Not present	Line termination is not integrated. For low speed/short distance, termination can be omitted. Otherwise, terminate the line externally on both ends.
Supported transmission speeds	$\begin{aligned} & 1200,2400,4800,9600, \\ & 19200,38400 \text { baud } \end{aligned}$	Settable over Modbus register [default=19200].
Start bit	1	Fixed.
Data bits	8	Fixed.
Stop bits	1 or 2	1 stop bit minimum, up to 2 when parity not enabled [default=1]
Parity bit	Even/odd/none	[default=Even]
Modbus visual diagnostics	LED2	Flashing yellow when data reception detected. Combined (OR) with Ethernet ACT function.
Maximum number of Modbus devices	247	Limited by possible Modbus addresses to 247. 1/8 nominal load enables 256 devices.
Maximum Modbus packet size	256 bytes	Including address (1) and CRC (2) bytes.
Isolation	Common ground (COM) with SET1, SET2 and SET3.	Modbus shares common ground with other signals.

4 PUMP INSTALLATION

4.1 INSTALLATION INTO PIPE LINES

Pump is protected with a double box during transport. It can be lifted from the box with internal handles or by lifting it by the heat sink.

Pumps are designed to be built in connecting flanges, using all screws. The connecting combined flanges are designed so the pump can be installed in PN6 or PN10 nominal pressure pipelines. Because of the combined flange design, washers must be used on the pump side, when installing the pump.

For a pump to operate with minimal vibrations and noise it should be installed into pipe lines with its 1-1 axis in horizontal position, as showed in figure 1. Pipes should be without curves for at least 5-10 D ($D=$ rated pipe diameter) from the flanges.
Desired head orientation can be achieved by rotating the pump head (allowed positions shown in figure 2 and 3). Pump head is mounted to hydraulic casting with four screws. By unscrewing those, the pump head can then be turned (figure 4).

Ambient around the pump should be dry and illuminated as appropriate and the pump should not be in direct contact with any objects. Pump seals prevents dust and particles from entering as prescribed by IP class. Make sure that the distribution box cover is mounted and that the cable glands are tightened and are sealing.
Pump will provide the longest lifetime with ambient at room temperature and moderate medium temperature. Prolonged operation at elevated temperatures could increase wear. Aging is accelerated by high power and high temperatures.

- Misconnection or overload could cause pump shutdown or even permanent damage.
- Pumps might be heavy. Provide yourself help if needed,
- Pump must not be used in the safety pipelines,
- Pump should not be used as a holder during welding!
- When reassembling, care should be taken to ensure seal fit. Failing that, water could cause damage to pumps internal parts,
- Drains between pump motor housing and hydraulic housing must be left free (should not be thermally insulated), as it could interfere with cooling and condense drainage,
- Hot medium can cause burns! The motor can also reach temperatures that could cause injury.

4.2 ELECTRICAL INSTALLATION

The pump has a built-in over current fuse and protection, temperature protection and basic overvoltage protection. It doesn't need an additional thermal protection switch. Connection leads should be capable of carrying rated power and should be properly fused. Ground lead connection is essential for safety. It should be connected first. Grounding is only meant for pump safety. Pipes should be grounded separately.

- Connection of the pump must be carried out by qualified personnel,
- Connection of the connecting cable must be done in a manner that ensures it is never in contact with the casing of the device, due to the high temperatures of the casing,
- This appliance can be used by children aged from 8 years and above and persons with reduced physical, sensory or mental capabilities or lack of experience and knowledge if they have been given supervision or instruction concerning use of the appliance in a safe way and understand the hazards involved,
- Children shall not play with the appliance,
- Cleaning and user maintenance shall not be made by children without supervision.

4.3 COMMUNICATION INSTALLATION

Available only on NMT(D) MAX C pumps.

```
4.3.1 ANALOG INPUT/OUTPUT
```

Detailed description is available in communication module manual.

4.3.2 RELAY OUTPUT

Detailed description is available in communication module manual.

4.3.3 ETHERNET

Detailed description is available in communication module manual.

4.3.4 MODBUS

Detailed description is available in communication module manual.

5 SETUP AND OPERATION

5.1 CONTROL AND FUNCTIONS

The pump can be controlled by display panel, 10-step switch, analog inputs, modbus or Ethernet connection.

- Display panel controls and overviews pump modes, parameters and on/off status,
- 10-step switch allows us to change relay output, analog inputs/outputs and resetting the pumps communication configuration,
- Analog inputs give us control over the pump (start, stop, max. curve, min. curve, 0-10 V, 4-20 mA, ...),
- Analog outputs are used for getting analog information about the pumps performance (errors, speed, mode, flow, height),
- Relay output signalizes pumps status,
- Ethernet connections offers control over all pump functions and settings (pumps variables, digital inputs, error overview),
- Modbus connection gives us the overview of all parameters and settings (pumps variables, analog inputs/outputs, error overview).

Several signals will influence the pump operation. For this reason, settings have different priorities as shown in the table below. If two or more functions are active at the same time, the one with highest priority will take precedence.

Priority	Pump control panel and Ethernet settings	External signals 5	Modbus control
1	Stop (OFF)		
2	Active night mode ${ }^{6}$		
3	Max. speed (Hi)		
4		Minimal curve	
5		Stop (RUN not active)	Stop
6		Max. speed (Hi)	
7			Reference point

[^2]
5.1.1 DISPLAY PANEL

With the use of the display panel, you can control and overview pump modes, on/off control, pump parameters and errors. To see how pump modes work, see chapter 5.2.Operation.

5.1.1.1 KEY FUNCTIONS

$\Theta_{\text {Key }}$

Short press:

- Scrolling through parameters downwards when not changing parameter values,
- Scrolling through modes downwards when mode selection is selected,
- Changing parameters downwards when setting parameter values.

Long press:

- 3 seconds together with \oplus turns on night mode,
- 3 seconds together with \odot locks pumps current operation,
- 5 seconds to turn off pump,
- $\quad 5$ seconds together with \oplus and \oplus keys to restore pump to factory settings.
$\sigma_{\text {Key }}$
Short press:
- To confirm currently selected values of both mode and parameter.

Long press:

- 3 seconds to trigger mode selection,
- 3 seconds together with Θ locks pumps current operation,
- 5 seconds together with long press on Θ and \oplus keys to restore pump to factory settings.
$\oplus_{\text {Key }}$
Short press:
- Scrolling through parameters upwards when not changing parameter values,
- Scrolling through modes upwards when mode selection is selected,
- Changing parameters upwards when setting parameter values.

Long press:

- 3 seconds together with Θ puts us in night mode,
- 5 seconds together with Θ and \odot keys to restore pump to factory settings.

5.1.1.2 TURNING ON AND OFF

On first start up the pump will operate with factory settings in automatic mode.
With subsequent start-ups, the pump will operate with the last settings that were set prior to its shut-down.

To switch the pump off, press and hold the \ominus key for 5 seconds, until OFF is shown on the display. When the pump is switched off, the numerical display shows OFF.

To turn the pump on, press the \ominus key briefly.

5.1.1.3 PUMP MODES AND PARAMETERS

For transition between modes, we hold the \odot key for 3 seconds and then select the mode in which we wish the pump to operate with \oplus or Θ keys. We confirm the selection with the \odot key.
After confirming the mode, the parameter, which can be set, will automatically be displayed and blink (except for auto mode). If necessary, we set the parameter value with \oplus and Θ keys, then confirm the setting with the \odot key or just press the \odot key to accept the given parameter.
We can scroll through the parameters within a mode with \oplus and \ominus keys. We select the parameter that can be adjusted (see individual mode) in the mode with the \odot key and set the desired value with \oplus and Θ keys. We confirm the selected value with the \odot key.

5.1.1.4 PUMP OPERATION LOCK

For locking and unlocking pump current pump mode and parameters, hold \ominus and \odot keys for 3 seconds. When the pump is locked, it is possible to turn the pump on and off, view parameters and reset the pump to factory settings that also unlocks the pump.

5.1.2 10-STEP SWITCH

Only available on NMT(D) MAX C pumps.
There is a mode selection rotary switch in the terminal box. It can be rotated by gently inserting a screwdriver into the arrow mark on top and rotating the switch to desired value.

Switch setting is used when the pump turns on! More details about different modes can be found in communications manual.

Mode switch position	Function	Description
0	Free configuration	Terminal functions are configured over Ethernet interface.
1	Mode 1	SET1 = RUN input SET2 $=$ MAX input SET3 = FB (10.5 V) output, used to supply RUN and MAX inputs. External voltage source can also be used. RS-485 = Modbus interface.
2	Mode 2	SET1 = RUN input SET2 $=$ SPEED input SET3 $=$ FB (10.5 V) output, used to supply RUN and MAX inputs. External $5-24 \mathrm{~V}$ voltage source can also be used. RS-485 = Modbus interface
$3 . .5$	Reserved	Reserved for future or customer specific use.
6	Show relay configuration	LED1 and LED2 will show relay configuration.
7	Change relay configuration	Relay configuration will be increased ($0->1,1->2,2->0$) when electricity is turned on. LED1 and LED2 will show current relay configuration.
8	Twin reset to factory	Same as Mode 9, with exception of: module IP address is set to 192.168.0.246 Twin IP address is set to 192.168.0.245
9	Reset to factory	This mode will set communication interface to default values. Main purpose is to restore default settings. NOTE: - Disconnect any SET1, SET2 and SET3 connections when using this mode to prevent possible harm to controller. SET1, SET2, SET3 will output test voltages of $10 \mathrm{~V}, 7 \mathrm{~V}$ and 5 V respectively. RS-485 port is actively driven. Relay will cycle. This is used for testing purposes. - It is recommended that all module wires are disconnected to prevent possible harm to external controllers.

5.1.3 ANALOG INPUT/OUTPUT

Only available on NMT(D) MAX C pumps.

The pump has three analog inputs/outputs with different functions. They can be configured through the web interface (page "pump") or through Modbus.

Input/Output	Function	Function description
SET1	Run [Default - Mode 1]	Turning the pump on/off. By default activating with connection to SET3.
SET2	Max/Min [Default - Mode 1]	Set the pump to max. settings when SET1 is active and to min. settings when SET1 is inactive.
SET3	FB [Default - Mode 1]	10 V voltage output used for activating SET 1 and SET2 by connecting them to SET3.

5.1.4 RELAY OUTPUT

Only available on NMT(D) MAX C pumps.

Configuration	Description
Run	Shows when pump is running.
Operate	Shows when pump is standby.
Error[Default]	Shows when pump has an error.
No function	Relay output doesn't show anything.
Always on	Relay always closed.

Only available on NMT(D) MAX C pumps.
The pump has a built in web server which allows you to access your pump directly via an existing Ethernet connection. The default address for access to the pump is "nmtpump /" or 192.168.0.245/

The web server uses HTML pages to set/view:

- Regulation mode settings
- Regulation parameters (power, RPM, head, flow)
- Relay settings
- External control inputs settings
- Current and previews error
- Pump statistics (power consumption, run time and other)

```
5.1.6 MODBUS
```

Only available on NMT(D) MAX C.
Pump has built in Modbus client, through which we can access pump information using the RS 485 standard.

Modbus allows us to set and view:

- Regulation mode settings,
- Regulation parameters (power, RPM, head, flow),
- Relay settings,
- External control inputs settings,
- Current and previews error,
- Pump statistics (power consumption, run time and other).

5.1.7 RESETTING PUMP TO FACTORY SETTINGS

For resetting the pump to factory settings all three buttons must be held for 5 seconds. This way the pump will set itself to automatic mode, delete previous height and power settings and unlock setting pump operation (if locked).

Resetting of communications module needs following steps:

1. Disconnecting power from pump,
2. Set the 10 -step switch to number 9^{8} (or 8 for left twin pump),
3. Turning the pump on and off again,
4. Setting the 10 -step switch to number 1,
5. Turning the pump on.

Communications module should now be set to factory settings.

[^3]
5.2 OPERATION

The pump can operate in 5 different modes. We can set the pump in the most appropriate mode, depending on the system where the pump operates.
The pump modes:

- Automatic mode (factory default),
- Proportional pressure,
- Constant pressure,
- Constant speed,
- Combined mode (all mode indicators are off) - only available on NMT(D) MAX C.

(A) Automatic mode

In automatic mode the pump automatically sets the operating pressure, depending on the hydraulic system. By doing so, the pump finds the optimal operating position.
This mode is recommended in most systems.
The parameters cannot be set; they can only be scrolled through.

(
 Proportional pressure

The pump maintains the pressure with relation to the current flow. The pressure is equal to the set pressure (Hset on the drawing) at maximum power; at 0 flow it is equal to HQ \% (default 50\%, HQ \% can be set on the pump webpage) of the set pressure. In between, the pressure changes linearly, relative to the flow. In regulated mode we can only set the pump pressure (Hset on the drawing). We
 can only scroll through the other parameters.

(-) Constant pressure

The pump maintains the currently set pressure (Hset on the drawing), from 0 flow to maximum power, where the pressure begins to drop.
At constant pressure, we can only set the pressure (Hset on the drawing) which the pump will maintain. We can only scroll through the other parameters.

Constant speed

The pump operates with the currently set speed (RPMset on the drawing). In the unregulated mode, we can only set the speed at which the pump will operate. We can only scroll through the other parameters.

Combined mode

Multiple limits can be set only over the web interface. None of the other modes are on.

(D) Night mode

When the pump is operating in night mode, it automaticly switches between the current mode and night mode. Switch occurs based on the temperature of the medium.
While in night mode its icon is turned on and the pump operates in chosen mode. If the pump senses drop in temperature of the medium for $15-20^{\circ} \mathrm{C}$ (in time frame of 2 hours), icon starts to blink and the pump switches to night mode. When the temperature of the medium rises, blinking stops and the pump goes back to previously chosen operation mode.

Night mode can only work in compliment to other modes and is not a mode that can run by itself.

5.2.1 TWIN PUMP OPERATION

Twin pump has double hydraulic housing with integrated check valve, which automaticly turns based on medium flow, and two separated motors. Pumps communicate with each other through Ethernet connection (only available on MAX C). Night mode is not recommended in this mode of operation.

Pumps can operate in several different modes, switching betweend the pumps is done by the communications module:

- Alternating operation [default setting] - One pump is operating while the other one is on standby. Pumps switch their role every 24 hours or when an error occurs on one pump.
- Backup operation - One pump operates constantly and the other one is on standby. If an error occurs on the operating pump the one on standby will automaticly start working. This mode can be set up by turning off the pump that we wish to be on standby. That is done by holding the \ominus button for 5 seconds.
- Parallel operation - Both pumps work at the same time with the same settings of constant pressure. This mode is used when greater flow than one single pump can output is needed. When the first pump hits its flow limit the second one turns on and compliments the first to reach desired flow. This mode is activated when we set both pumps to constant pressure mode.

On NMT(D) MAX pumps the switching is done by the user.

If pump failure occurs, the error causing the failure will appear in the display screen. Errors on the screen are identified as:

Error group (X)	Error description	Possible cause and solution
1	Low load detected	There is no medium in the pump. Check if there is medium in the system.
2	Motor overload	Excessive current load or blocked rotor. If the issue persists, check if the rotor is spinning freely.
3	Motor too hot	Motor has exceeded allowed temperature and is now stopped to cool down. Once cooled, it will automatically restart.
4	Electronics error	An electronics error was detected. The pump can still operate, but needs servicing.
5	Motor/stator failure	There could be an interruption in the motor winding. Pump needs servicing.

The service code (Y) is intended for service personal.
If the pump is unresponsive, disconnect and connect it back to the electrical grid.

7 FAULT FINDING

7.1 ERROR CODES

The following codes will show up on display panel and on the appropriate Modbus registers to help you diagnose the cause of improper operation.

Error code	Description	Probable cause
E1x	Load errors	
E10 (drY)	Low motor load	Low load detected. Pump is running dry.
E11	High motor load	Motor might be faulty or viscous medium is present.
E2x	Protection active	
E22 (hot)	Converter temperature limit	Circuit is too hot and power was reduced to less than $2 / 3$ of rated power.
E23	Converter temperature protection	Circuit is too hot to run, pump stopped
E24	Converter overcurrent	Hardware overcurrent protection triggered.
E25	Overvoltage	Line voltage is too high
E26	Undervoltage	Line voltage is too low for proper operation.
E27	PFC Overcurrent	Power correction circuit current cannot be controlled
E3x	Pump errors	
E31	Software motor protection active.	Average motor current was too high, pump load is much higher than expected
E4x	Device specific error codes	
E40	General frequency converter error	Electrical circuitry did not pass self-test.
E42 (LEd)	LED faulty	One of the display segment diodes is faulty (open/short)
E43 (con)	Communications failed	Display board does not detect proper connection to main board, but power supply is present
E44	DC link current offset	Voltage on DC link shunt (R34) not in expected range
E45	Motor temperature outside limits	During MFG. TEST, this is $10 \mathrm{k} \Omega, 1 \%$ resistor for $10^{\circ} \mathrm{C} . .30^{\circ} \mathrm{C}$ During operation, expected values are $-55^{\circ} \mathrm{C} . .150^{\circ} \mathrm{C}$
E46	Circuit temperature outside limits	During MFG. TEST, this is $0^{\circ} \mathrm{C} . .50^{\circ} \mathrm{C}$. During operation, expected values are $-55^{\circ} \mathrm{C} . .150^{\circ} \mathrm{C}$
E47	Voltage reference outside limits.	Comparison between internal references does not match
E48	15V outside limits	15V napajanje ni 15V.
E49	Test load does not match	No test load detected or current measurement does not work properly (MFG. TEST)
E5x	Motor error codes	
E51	Motor parameters out of range	Motor does not behave as expected
E52	Thermal protection active	Motor temperature is too hot to operate.
E53	Invalid model selected	Pump model not valid or out of reach

Deutsch (DEU) Montage und Betriebsanleitung

INHALT
1 Allgemeine informationen 41
1.1 Einsatz 41
1.2 Pumpenbezeichnung 41
1.3 Wartung, ersatzteile und entsorgung 42
2 Sicherheit 42
3 Technische daten 42
3.1 Standard, Schutzart und anschluss 42
3.2 Medium 43
3.3 Temperatur und luftfeuchtigkeit. 43
3.4 Elektrische daten 43
3.5 Kommunikation 44
4 Einbau 46
4.1 Einbau in das leltungssystem 46
4.2 Elektrischer anschluss 47
4.3 Anschluss kommunikation 47
5 Einstellung und arbeitsweise 48
5.1 Funktionen 48
5.2 Arbeitsweise 54
6 Mögliche fehler und lösungen 56
7 Fehlersuche 56
7.1 Fehlercodes 56

Die Leistungsdiagramme finden Sie auf Seite 150.
Änderungen vorbehalten!
Sicherheitshinweise:

Warnung:
Nichtbeachtung kann zu Verletzungen oder Defekt an der Pumpe führen

Empfehlung:
Empfehlung beachten

1 ALLGEMEINE INFORMATIONEN

1.1 EINSATZ

Die NMT(Neue Motor Technologie) Umwälzpumpen werden zur Förderung von Medien/Flüssigkeiten in Heizungsanlagen, Klimaanlagen und Trinkwasseranlagen eingesetzt. Sie sind als Einzel- oder Doppelpumpe erhältlich und verfügen über eine integrierte Differenzdruckregelung, die eine automatische Anpassung der Pumpenleistung an den Bedarf der Anlage ermöglicht.
Zur Verfügung stehen zwei Ausführungen, NMT(D) MAX und NMT(D) MAX C. NMT(D) MAX C ermöglicht eine externe Ansteuerung über Ethernet, Modbus, analoge Ein- und Ausgänge sowie Relaisfunktionen. Die NMT(D) MAX Ausführung bietet die Möglichkeit des nachträglichen Einbaus des NMTC Kommunikationsmoduls und ermöglicht damit die oben erwähnten Funktionen für die Gebäudeleittechnik. Detailierte Anleitungen zur NMT(D) MAX C und dem Kommunikationsmodul NMTC finden Sie auf der Internetseite: »http://imp-pumps.com/en/documentation/« oder über den QR Kode:

Die Doppelpumpen bestehen aus zwei Pumpenköpfen, die in einem Gehäuse hydraulisch parallel angeordnet sind. Eine eingebaute förderstromgesteuerte Umschaltklappe verhindert die Rückströme. Jeder Pumpenkopf wird seperat an den Stromkreis angeschlossen.

1.2 PUMPENBEZEICHNUNG

1.3 WARTUNG, ERSATZTEILE UND ENTSORGUNG

Die NMT Umwälzpumpen arbeiten unter normalen Bedingungen über längere Jahre wartungsfrei. Nach Ablauf der Garantiezeit garantieren wir die Verfügbarkeit von entsprechenden Ersatzteilen für mindestens 3 Jahre. Dieses Produkt, sowie Teile davon müssen umweltgerecht entsorgt werden. Benützen Sie dafür entsprechende Entsorgungsgesellschaften. Ist dies nicht möglich, wenden Sie sich bitte an IMP PUMPS.

2 SICHERHEIT

Bitte lesen Sie vor dem Einbau und der Inbetriebnahme der Pumpe diese Bedienungsanleitung sorgfältig durch. Berücksichtigen Sie die Sicherheitshinweise. Die Pumpe muss gemäss den lokalen Vorschriften eingebaut und angeschlossen werden. Die Servicearbeiten, Einbau und Wartung der Pumpen darf nur vom qualifiziertem Fachpersonal durchgeführt werden. Nichtbeachtung der Sicherheitshinweise kann zu Schäden an der Anlage, Verletzungsgefahr und zum Verlust jeglicher Schadensansprüche führen. Die Sicherheitsfunktionen der Pumpe sind nur gewährleistet, wenn die Pumpe nach Anweisungen des Herstellers gewartet und eingebaut ist und diese innerhalb ihrer Leistungskurve betrieben wird.

3 TECHNISCHE DATEN

3.1 STANDARD, SCHUTZART UND ANSCHLUSS

Die Pumpen entsprechen folgenden Normen:

Schutzklasse:

IP44
Isolierungsklasse:
180 (H)
Motorschutz:
Eingebauter, thermischer Motorschutz

Einbaueigenschaften		
Pumpentyp	Nenndruck	Einbaulänge[mm]
NMT(D) MAX (C) 32-120	PN 6/10	220
NMT(D) MAX (C) 40-40		220/250
NMT(D) MAX (C) 40-80		220/250
NMT(D) MAX (C) 40-120		220/250
NMT(D) MAX (C) 40-180		220/250
NMT(D) MAX (C) 50-40		280
NMT(D) MAX (C) 50-80		280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 65-40		340
NMT(D) MAX (C) 65-80		340
NMT(D) MAX (C) 65-120		340
NMT(D) MAX (C) 80-40	PN 6	360
NMT(D) MAX (C) 80-40	PN 10	360
NMT(D) MAX (C) 80-80	PN 6	360
NMT(D) MAX (C) 80-80	PN 10	360

3.2 MEDIUM

Zum Einsatz kommen nur reine, dünnflüssige, nicht-aggressive und nichtexplosive Medien ohne feste oder langfaserige Bestandteile sowie Beimengen von mineralischen Ölen. Das Wasser muss den Anforderungen der üblichen Normen zur Wasserqualität in Heizungsanlagen wie VDI 2035 entsprechen.
Die Pumpe darf nicht für die Förderung von feuergefährlichen Medien wie z.B. Dieselöl oder Brennstoff eingesetzt werden.

3.3 TEMPERATUR UND LUFTFEUCHTIGKEIT

	Erlaubte Temperaturen Umgebung und Medium		
Temperatur Umgebung $\left[{ }^{\circ} \mathrm{C}\right]$	Temperatur Medium $\left[{ }^{\circ} \mathrm{C}\right]$		Luftfeuchtigkeit
	min.	110	
30	-10	100	
35	-10	90	$<95 \%$
40	-10	80	

\triangle

- Betrieb ausserhalb der empfohlenen Bedingungen kann die Lebensdauer beeinflussen, sowie zum Verlust der Gewährleistung führen

3.4 ELEKTRISCHE DATEN

3.4.1 STROM, SPANNUNG UND LEISTUNG

Elektrische Eigenschaften					
Pumpentyp	Nennspannung	Nennleistung [W]	$\begin{gathered} \text { Nennstro } \\ \mathrm{m}[\mathrm{~A}] \end{gathered}$	Strombegrenzung ($I_{\text {maks }}$) [A]	Inbetriebnahme
NMT(D) MAX (C) 32-120	230 VAC $\pm 15 \%, 47-63 \mathrm{~Hz}$ Die Pumpen sind auch bei niedriger Spannung mit reduzierter Leistung funktionsfähig ($\mathrm{P}=\mathrm{I}_{\text {maks }} * \mathrm{U}$)	370	1.8	4.3	Integrierter Softstart
NMT(D) MAX (C) 40-40		110	1	4.3	
NMT(D) MAX (C) 40-80		270	1.3	4.3	
NMT(D) MAX (C) 40-120		480	2.3	4.3	
NMT(D) MAX (C) 40-180		680	3.4	4.3	
NMT(D) MAX (C) 50-40		160	1.3	4.3	
NMT(D) MAX (C) 50-80		370	1.7	4.3	
NMT(D) MAX (C) 50-120		560	2.5	4.3	
NMT(D) MAX (C) 50-120		830	3.6	4.3	
NMT(D) MAX (C) 65-40		230	1.1	4.3	
NMT(D) MAX (C) 65-80		560	2.6	4.3	
NMT(D) MAX (C) 65-120		810	3.5	4.3	
NMT(D) MAX (C) 80-40		390	1.8	4.3	
NMT(D) MAX (C) 80-40		390	1.8	4.3	
NMT(D) MAX (C) 80-80		800	3.5	4.3	
NMT(D) MAX (C) 80-80		800	3.5	4.3	

3.5 KOMMUNIKATION

Die Kommunikationsfunktionen finden Sie im Kapitel 5.1 Funktionen. Detaillierte Informationen zu den Protokollen finden Sie in der Anleitung des Kommunikationsmodules NMTC.

3.5.1 ANALOGER EINGANG-UND AUSGANG

Verfügbar nur bei der NMT(D) MAX C Pumpe.
Die Anschlüsse können als Eingang- oder Ausgang benützt werden, abhängig von der Einstellung. Zur Verfügung stehen drei Anschlüsse SET1, SET2 in SET3.

	Elektrische Eigenschaften	
Eingangsspannung	$-1-32 \mathrm{VDC}$	Benützung als Eingang
Ausgangsspannung	$0-12 \mathrm{VDC}$	Benützung als Ausgang / 5 mA max
Eingangsimpedanz	$\sim 100 \mathrm{k} \Omega$	0.5 mA zusätzliche Belastung
Eingangsstrom	$0-33 \mathrm{~mA}$	COM, benützt als Ausgang
Galvanische Isolation		Bis Netzspannung 4 kV @ $1 \mathrm{~s}, 275 \mathrm{~V}$

3.5.2 RELAISAUSGANG

Verfügbar nur bei der NMT(D) MAX C Pumpe.

	Elektrische Eigenschaften
Maximal erlaubt	3 A
Ausgangsspannung	$230 \mathrm{VAC}, 32 \mathrm{VDC}$
3.5 .3 ETHERNET	

Verfügbar nur bei der NMT(D) MAX C Pumpe.

Elektrische Eigenschaften		
Ethernet Anschluss	RJ-45, 10BASE-T, $10 \mathrm{Mbit} / \mathrm{s}$ Verbindung	
		Web server (port 80)
Verbindungsart	-	Webserver
	-	Modbusa RTU über TCP/IP
IP Adresse	192.168.0.245 (192.168.0.246 bei Zwillingsausführung rechter Pumpenkopf)	
Ethernet	LED1	Langsam blinkend bei Modulanschluss, permanent leuchtend bei Verbindung
Leuchtdiode	LED2	

3.5.4 MODBUS

Verfügbar nur bei der NMT(D) MAX C Pumpe.

Modbus Eigenschaften		
Protokoll	Modbus RTU	
Modbus Anschluss	Federklemme	2+1 pin, Siehe Anleitung Kommunikationsmodul NMTC.
Modbus Standardverbindung	RS-485	
Modbus Verbindung	2 Kabel + common	A, B und COM (common). Siehe Anleitung Kommunikationsmodul NMTC
Kommunikationssender	Eingebaut, 1/8 Standard Belastung	Anschluss über »passive tap« oder »daisy chain«.
Max. Verbindungslänge	1200 m	
Adresse Klient	1-247	Voreingestellt 245, einstellbar über Modbus.
Verbindungsabschluss	Nicht vorhanden	Nicht eingebaut in das NMTC Modul.Für kürzere, langsame Verbindung kann Abschluss ausgelassen werden, erforderlich auf beiden Seiten der Verbindung.
Unterstützte Verbindungsgeschwindig keiten	$\begin{aligned} & 1200,2400,4800, \\ & 9600,19200,38400 \\ & \text { baud } \end{aligned}$	Einstellbar über Modbus Register [voreingestellt=19200].
Start bit	1	Nicht veränderbar
Daten bit	8	Nicht veränderbar
Stop bit	1 oder 2	1 stop bit minimal, 2 bei nicht verfügbarer Paritet. [voreingestellt=1].
Paritet bit	Sod/lih/ohne	[voreingestellt=Sod].
Modbus Visualdiagnostik	LED2	Blinkend gelb, bei Datenverbindung. Möglich in Kombination mit/oder Ethernet ACT Funktion.
Maximale Anzahl Modbus Anlagen	247	Bis 247. 1/8 Belastung, möglich 256 Anlagen.
Maximale Grösse Datenpaket Modbus	256	Angeschlossen mit Adresse (1) in CRC (2)
Isolation	Gesamtmasse (OV) mit SET1, SET2 in SET3.	Modbus Teilung mit anderen Signalen

4 einbau

4.1 EINBAU IN DAS LEITUNGSSYSTEM

Die Pumpe ist zum Transport durch eine doppelte Verpackung geschützt. Die Pumpe wird mit Hilfe der ausgebildeten Grifflaschen der inneren Verpackung, oder durch Anheben am Kühlkörper aus der Verpackung genommen.

Die Pumpe wird am Flanschanschluss eingebaut, mit den dafür vorgesehenen Schrauben und Dichtungen. Der Kombiflansch ermöglicht einen Einbau Betriebsdruck PN6 oder PN10.

Damit die Pumpe möglichst geräuschlos arbeitet, ist sie immer mit waagerechter Pumpenwelle einzubauen.
Eine Änderung der Position des elektrischen Pumpenkopfes kann durch Drehen des hydraulischen Gehäuses erreicht werden (siehe Bild 2 und 3). Der Pumpenkopf ist durch 4 Schrauben am hydraulischen Gehäuse befestigt. Achten Sie beim Drehen des Pumpenkörpers auf die Dichtung zwischen Motorkopf und Hydraulikgehäuse beim Drehen des Pumpenkörpers (Bild 4).

Verbrühungsgefahr!

Die Anlage muss vor der Demontage der Schrauben entleert bzw. die Absperrventile auf Saug- und Druckseite der Pumpe geschlossen werden, da das Fördermedium brühend heiß und unter hohem Druck stehen kann.

Die Pumpe sollte von aussen vor Wasser geschützt und auf Dichtigkeit überprüft werden, wie es die IP Schutzklasse vorgibt. Pumpe sollte nicht in direktem Kontakt mit irgendwelchen Gegenständen sein. Sorgen Sie dafür, dass der Klemmkasten und die Kabeldurchführungen ordnungsgemäss und sicher vor Wassereintritt geschützt sind. Die Pumpe erreicht bei optimaler Umgebungstemperatur und Mediumtemperatur eine längere Lebensdauer. Zu hohe Temperaturen und Überbelastung können die Lebensdauer der Pumpe beeinflussen.

- Unsachgemässer Anschluss und zu hohe Belastungen können an der Pumpe Schäden hervorrufen
- Beachten Sie dass Eigengewicht der Pumpen
- Die Pumpen dürfen nicht in Sicherheits- Rohrsystemen eingebaut werden
- Unmittelbare Schweissarbeiten an Rohrsystemen kann zu Schäden an der Pumpe führen
- Unsachgemässer Einbau der Dichtung zwischen Motorkopf und Hydraulikgehäuse führt zu Undichtigkeit und Folgeschäden
- Am Hydraulikgehäuse befinden sich zum Ableiten des Kondenswassers sogenannte Kondensöffnungen. Diese dürfen nicht abisoliert oder verschlossen werden, da sonst die Motorkühlung beeinflusst wird, sich Kondenswasser ansammelt und es somit zu Schäden an der Pumpe kommen kann (Bild1).
- Verbrühungsgefahr! Auch der Pumpenmotor kann hohe Temperaturen erreichen

4.2 ELEKTRISCHER ANSCHLUSS

Der elektrische Anschluss erfolgt mit dem beigelegtem Anschlussstecker und der beigelegten Anleitung.
Die Pumpe verfügt über eine Stromsicherung, Temperaturschutz und Überspannungsschutz und benötigt somit keine weiteren thermischen Schutzschalter. Das Anschlusskabel soll den üblichen Zugbelastungen entsprechen. Ein Erdungskabel ist erforderlich und soll im Vorfeld angeschlossen werden. Das Rohrleitungssystem soll getrennt geerdet sein.

- Anschluss der Pumpe muss von qualifiziertem Fachpersonal durchgeführt werden,
- Anschluss der Anschlussleitungen so dass es nicht aufgrund der hohen Temperaturen, mit dem Gehäuse in Berührung kommt,
- Die Pumpe soll nicht, ausser unter Aufsicht einer verantwortlichen Person, von Kindern oder Personen mit eingeschränkten physischen, sensorischen oder geistigen Fähigkeiten oder mangeInder Erfahrung in Gebrauch genommen werden,
- Kinder beaufsichtigen, kein Spielzeug.

4.3 ANSCHLUSS KOMMUNIKATION

Verfügbar nur bei der NMT(D) MAX C Pumpe.

4.3.1 ANALOGER EIN- UND AUSGANG

Siehe Anleitung Kommunikationsmodul NMTC.

4.3.2 RELAISAUSGANG

Siehe Anleitung Kommunikationsmodul NMTC.

4.3.3 ETHERNET

Siehe Anleitung Kommunikationsmodul NMTC.

4.3.4 MODBUS

Siehe Anleitung Kommunikationsmodul NMTC.

5 EINSTELLUNG UND ARBEITSWEISE

5.1 FUNKTIONEN

Die NMT(D) MAX kann nur über das Dispaly bedient werden. Die NMT(D) MAX C zudem über den 10-stufigen Drehschalter, analogem Eingang, Modbus und dem Ethernet Anschluss.

- Das Display zeigt die Arbeitsweise und Funktion mit den dazu entsprechenden Parametern an (an/aus),
- Der 10-stufige Drehschalter ermöglicht die Einstellung des Relaisausganges und Einstellung des analogen Ein- Ausganges sowie die Kommunikationsfunktionen,
- Der analoge Eingang ermöglicht die Regelung der Pumpe (Betrieb an/aus, maximale Leistung, minimale Leistung, 0-10V, 4-20mA...),
- Der analoge Ausgang ermöglicht die Regelung er Pumpe (Fehlermeldung, Umdrehungen, Arbeitsweise, Durchfluss, Förderhöhe),
- Der Relaisausgang zeigt den Status der Pumpe an,
- Die Ethernetverbindung ermöglicht einen Einblick auf alle Parameter und Einstellungen der Pumpe,
- Die Modbusverbindung ermöglicht einen Einblick auf alle Parameter und Enstellungen der Pumpe.

Es können gleichzeitig mehrere Signale die Pumpe regeln und verfügen daher über verschiedene Prioritäten. Diese sind in der unteren Tabelle ersichtlich. Sollten zwei Funktionen gleichzeitig aktiv sein, so hat die mit der höheren Priorität Vorrang.

Priorität	Kontrolle über Display und Ethernet Einstellungen	Aussensignal ${ }^{9}$	Modbus Kontrolle
1	Stop (OFF)		
2	Aktiv Nachtabsenkung ${ }^{10}$		
3	Max. Umdrehungen (Hi)		
4		Min. Leistungskurve	
5		Stop (RUN nicht aktiv)	Stop
6			Referenzpunkt
7			
8			
9			

Beispiele:

- Stop auf dem Display hält die Pumpe an, unabhängig vom Aussensignale und Referenzpunkt.
- Bei nicht aktiven Aussenstart, kann die Pumpe nicht über Modbus gestartet werden. Sie kann am Display über maximale Umdrehungen eingestellt werden.

[^4]
5.1.1 DISPLAYANZEIGE

Mit Hilfe der Displayanzeige können die verschiedenen Betriebsarten und Parameter eingestellt und abgelesen werden. Zudem kann die Pumpe ein/ und ausgeschaltet werden

5.1.1.1 FUNKTIONSTASTEN

$\Theta_{\text {Taste }}$
Kurz halten:

- Umstellen der Parameter abwärts, Parameterwerte werden nicht verändert,
- Umstellen der Betriebsart abwärts, bei Auswahl der Betriebsart,
- Umstellen der Parameterwerte abwärts, bei Auswahl der Parameterwerte.

Lang halten:

- 3 Sekunden zusammen mit \oplus schaltet sich ein nachtabsenkung,
- 3 Sekunden zusammen mit \oplus aktiviert den Pumpenbetrieb Sperre,
- 5 Sekunden zum Ausschalten Pumpe,
- 5 Sekunden gemeinsam mit Taste \odot und \oplus Pumpe auf die Werkseinstellungen zurückzusetzen.
$\theta_{\text {Taste }}$
Kurz halten:
- Bestätigen der ausgewählten Betriebsart/Parameter.

Lang halten:

- 3 Sekunden Wechsel zwischen den Betriebsarten ,
- 3 Sekunden zusammen mit Θ aktiviert den Pumpenbetrieb Sperre,
- 5 Sekunden gemeinsam mit Taste Θ und \oplus Pumpe auf die Werkseinstellungen zurückzusetzen.
$\oplus_{\text {Taste }}$
Kurz halten:
- Umstellen der Parameter aufwärts, keine Veränderung der Parameter,
- Umstellen der Betriebsart,
- Umstellen der Parameter .

Lang halten:

- 3 Sekunden zusammen mit Θ schaltet sich ein nachtabsenkung,
- 5 Sekunden gemeinsam mit Taste Θ und \oplus Pumpe auf die Werkseinstellungen zurückzusetzen.

5.1.1.2 EIN- UND AUS

Bei Erstanschluss der Pumpe an das Stromnetz werkseingestellter Automatikbetrieb.

Nach Wiederinbetriebnahme der Pumpe läuft die zuletzt eingestellte Betriebsart/Parameter.
Zum Ausschalten die Taste $\Theta 5$ Sekunden gedrückt halten, bis das Zeichen OFF erscheint.

Zur Wiederinbetriebnahme Taste \ominus kurz drücken.

5.1.1.3 EINSTELLEN DER BETRIEBSARTEN

Zum Wechseln zwischen den Betriebsarten drücken Sie die \odot Taste für 3 Sekunden und wählen die gewünschte Betriebsart mit der \oplus ali Θ Taste aus. Die Auswahl wird mit der \oplus Taste bestätigt. Nach Bestätigung der Betriebsart wird automatisch die Auswahl der Parameter angezeigt (ausser im Automodus). Mit der Taste \oplus und \ominus stellen Sie die Parameterwerte ein und bestätigen mit Θ.Innerhalb der Betriebsarten können die Parameterwerte mit der \oplus und \ominus Taste überprüft werden, mit \oplus und Θ verändert und mit der Taste \odot bestätigt.

5.1.1.4 PUMPENBETRIEB SPERRE

Zum Sperren und Entsperren Pumpenmodus und Parameter, halten Θ und \odot Tasten für 3 Sekunden. Wenn die Pumpe gesperrt ist, ist es möglich, Ein- und Ausschalten der Pumpe anzuzeigen Parameter und Zurücksetzen des Pumpe auf die Werkseinstellungen, die auch entriegelt die Pumpe.

5.1.2 10-STUFIGER UMDREHSCHALTER

Verfügbar nur bei der NMT(D) MAX C Pumpe.
Das Kommunikationsmodul verfügt zur Einstellung der verschiedenen Funktionen über einen Drehschalter. Mit Hilfe eines Schraubendrehers kann die jeweils gewünschten Funktion eingestellt werden.

Bei Einschalten der Pumpe wird die entsprechende Funktion aktiv. Detailierte Informationen dazu in der Betriebsanleitung NMTC Kommunikationsmodul.

Wert	Funktion	Beschreibung
0	Frei	Einstellbar über webserver
1	Anwendung 1	SET1 = RUN Eingang SET2 = MAX Eingang SET3 $=\mathrm{FB}(10.5 \mathrm{~V})$ Ausgang, zur Anwendung RUN und MAX Eingang. Aussenspannung kann ebenso dienen. RS-485 = Modbus Kommunikation
2	Anwendung 2	SET1 = RUN Eingang SET2 = SPEED Eingang SET3 $=$ FB (10.5 V) Ausgang, zur Anwendung RUN und MAX Eingang. Aussen 5-24 V kann ebenso dienen RS-485 = Modbus Kommunikation
$3 . .5$	Reserviert	Reserviert für angepasste Anwendungen
6	Zeigt Einstellung Relaisausgang	LED1 und LED2 zeigt Einstellung Relaisausgang
7	Ändert Einstellungen Relaisausgang	Ändert die Einstellungen Relaisausgang. Ausgang verändert sich bei Aus/Ein der Pumpe am Stromnetz in Reihenfolge 0->1, 1->2, 2->0. LED1 und LED2 zeigen Einstellungen am Relaisausgang
8	Werkseinstellung Zwillingspumpe	Wie 9, nur dass IP Adresse Modul eingestellt auf: 192.168.0.246 IP Adresse Zwillingspumpe 192.168.0.245
9	Werkseinstellung	NMTC Modul zurück auf Werkseinstellung, nach Aus/Ein der Pumpe am Stromnetz Bemerkung: - Alle Verbindungen auf SET1, SET2 in SET3 aus, in dieser Funktion da sonst Beschädigung am Regler. Auf SET1, SET2, SET3 Ausgangsspannung 10V, 7V und 5 V . RS-485 port ist active driven. Relaisfunktion. Für Testanwendungen - Auch alle anderen Verbindungen zum Modul trennen, um Schäden am REgler zu vermeiden.

5.1.3 ANALOGER EINGANG UND AUSGANG

Verfügbar nur bei der NMT(D) MAX C Pumpe.

Die Pumpe verfügt über drei analoge Ein- und Ausgänge, mit verschiedenen Funktionen. Einstellbar über webserver oder Modbus.

Eingang/Ausgang	Funktion	Beschreibung
SET1	Run[übernommen 1]	Pumpe Ein/Aus. Aktiviert in Verbindung mit SET3.
SET2	Max/Min[übernommen	Maximale Einstellungen, wenn SET1 aktiv. Minimale Einstellungen, wenn SET1 aktiv.
SET3	1]	10V Spannungsausgang, wird aktiviert über SET1 und SET2 die miteinander verbunden werden

5.1.4 RELAISAUSGANG

Verfügbar nur bei der NMT(D) MAX C Pumpe.

Einstellungen	Beschreibung
Run [gegeben]	Zeigt an, wenn die Pumpe läuft
Operation	Zeigt, wenn die Pumpe im Standby
Fehler	Fehlermeldung
Ohne Funktion	Zeigt nichts an
Permanent an	Relais permanent an

5.1.5 ETHERNET

Verfügbar nur bei der NMT(D) MAX C Pumpe.

Die Pumpe besitzt über einen Zugang zum webserver direkt oder über Ethernet. Werkseingestellte Adresse »nmtpump/« oder 192.168.0.245/

HTML für Einstellungen/Anzeige:

- Arbeitsweise,
- Parameter(Leistung, Umdrehungen, Förderhöhe, Durchfluss),
- Einstellung Relaisausgang,
- Einstellung Aussenkontrolle,
- Fehleranzeige,
- Statistik.

5.1.6 MODBUS

Verfügbar nur bei der NMT(D) MAX C Pumpe.
Die Pumpe verfügt über Modbus und ermöglicht den Zugrifft durch Sandard RS 485 und ermöglciht das Ablesen und Einstellen von:

- Arbeitsweise,
- Parameter(Leistung, Umdrehungen, Förderhöhe, Durchfluss),
- Einstellung Relaisausgang,
- Einstellung Aussenkontrolle,
- Fehleranzeige.

5.1.7 WERKSEINSTELLUNG

Um die Pumpe auf die Werkseinstellungen zurück zu setzen werden alle drei Displaytasten gleichzeitig für 5 Sekunden gedrückt gehalten. Dadurch setzt sich die Pumpe auf Automatikbetrieb zurück, löschen bisherigen Höhe und Leistungseinstellungen und entsperren Einstellung Pumpenbetrieb (wenn gesperrt).

Die Pumpe vom Stromnetz genommen werden

1. 10-stufen Drehschalter auf 9 setzen ${ }^{12}$ (8 , bei Einstellung des linken Zwillingspumpenkopfes),
2. Pumpe aus- und wieder einschalten,
3. 10-stufen Drehschalter auf 1 setzen,
4. Pumpe einschalten.

Das Kommunikationsmodul wird dadurch auf die Werkseinstellungen zurück gesetzt.

[^5]
5.2 ARBEITSWEISE

Die Pumpe verfügt über 5 verschiedene Betriebsarten in denen die Pumpenleistung optimal an die aktuelle Anlagenbedingungen angepasst werden kann:

- Automatik (Werkseinstellung),
- Proportionaler Druck,
- Konstanter Druck,
- Konstante Umdrehungen,
- Kombinierte Funktion (alle anderen Betriebsarten sind deaktiviert).

(A) Automatik

Im Automatik Modus passt sich die Pumpenleistung automatisch dem Druck der Heizanlage an und bestimmt den optimalen Betriebspunkt.
Diese Betriebsart wird in den meisten Fällten empfohlen.
Parameter können nur überprüft werden, nicht verändert.

Proportionaler Druck

Der Differenzdruck wird in Abhängigkeit vom Förderstrom geregelt. Der Druck entspricht dem eingestelltem Druck (Hset) bei maximaler Leistung, bei 0 Durchfluss entspricht dieser 50% des eingestellten Druckes. Dazwischen verändert sich der Druck linear in Abhängigkeit zum Durchfluss.
In dieser Betriebsart kann nur der Druck (Hset) reguliert werden, alle anderen
 Parameter bleiben unverändert.

Konstanter Druck
Die Pumpe behält den eingestellten Druck bei (Hset) von 0 bis zur maximalen Stärke, danach beginnt der Druck zu fallen.
Bei konstantem Druck kann nur der Druck, den die Pumpe halten soll, eingestellt werden. Alle anderen Parameter bleiben unverändert.

Konstante Umdrehungen

Die Pumpe arbeitet unter den voreingestellten Umdrehungen (RPMset). Nur die Umdrehungen können bestimmt werden, alle anderen Parameter bleiben unverändert.

Kombinierte Funktion

Mehrere Funktionen können über den Internet Browser ausgewählt werden. Alle anderen Einstellungen verlieren ihre Funktion.

(J) Nachtabsenkung

In dieser Funktion schaltet die Pumpe automatisch zwischen dem eingestellen Leistungsbereich und dem Leistungsbereich »Nachtabsenkung«. Die Umschaltung ist abhängig von der Mediumtemperatur im System.
Bei Aktivierung der Nachtabsenkung leuchtet die Funktion auf dem Display und die Pumpe arbeitet im eingestellten Leistungsbereich.
Wenn die Pumpe einen Temperaturabfall des Mediums um $15-20^{\circ} \mathrm{C}$ erkennt (im Zeitraum von ca. 2 Stunden) blinkt die Taste und die Pumpe schaltet automatisch auf Nachtabsenkung.
Bei Anstieg der Temperatur erlischt das blinkende Display und die Pumpe kehrt in den voreingestellen Leistungsbereich zurück.
Die Funktion »Nachtabsenkung« funktioniert nur in Verbindung mit den oben beschriebenen Funktionsweisen und ist keine selbständige Funktionsweise.

5.2.1 DOPPELPUMPE

Die Doppelpumpen bestehen aus zwei Pumpenköpfen, die in einem Gehäuse parallel angeordnet sind. Eine eingebaute förderstromgesteuerte Umschaltklappe verhindert das Rückströmen. Die beiden Pumpenköpfe können bei der NMTD C Serie durch ein Ethernetkabel miteinander verbunden werden. Die Funktion »Nachtabsenkung« ist bei dieser Betriebsart nicht empfehlenswert.

Folgende Funktionsarten sind aufgrund des Kommunikationsmodules möglich:

- Wechselbetrieb (werkseingestellt) - die Pumpenköpfe arbeiten im Wechselbetrieb. Während ein Pumpenkopf fördert, steht der andere still. Alle 24 Stunden, oder im Falle einer Störung übernimmt der andere Pumpenkopf die Funktion,
- Reservebetrieb - Ein Pumpenkopf übernimmt permanent die Funktion, der andere steht auf Reservebetrieb. Bei einer Fehlermeldung übernimmt die Reservepumpe die Funktion. Diese Funktion kann durch Drücken der Minustaste/Ausschalten für 5 Sekunden an der Reservepumpe aktiviert werden,
- Parallelbetrieb - Beide Pumpenköpfe arbeiten gleichzeitig mit identischen Einstellungen konstanter Druck. Diese Funktionsweise ist empfehlenswert wenn höhere Förderströme gebraucht werden. Wenn ein Pumpenkopf seine Leistungsgrenze erreicht, tritt der zweite Pumpenkopf in Betrieb. Diese Funktion wird durch identische Einstellung konstanter Druck auf beiden Pumpenköpfen erreicht.

Bei der Zwillingspumpe NMT(D) MAX ohne Kommunikationsmodul kann ein Wechselbetrieb nur extern ausgeführt werden.

6 MÖGLICHE FEHLER UND LÖSUNGEN

Bei einem Defekt an der Pumpe wird auf dem Display die Fehlerursache aufgezeigt. Folgende Meldungen können angezeigt werden:

Fehler gruppe(X)	Beschreibung	Mögliche Ursache und Abhilfe
1	Trockenlauf	Fördermedium fehlt, überprüfen Sie den Inhalt der Heizanlage
2	Motorüberlastung	Überhöhte Stromspannung oder blockierter Rotor. Überprüfen Sie bei wiederholter Fehlermeldung die Rotordrehung
3	Motorüberhitzung	Zu hohe Motortemperatur erreicht, automatisch preventiv abgeschaltet. Nach Abkühlung startet die Pumpe automatisch.
4	Elektronikfehler Defekt am	Elektronikfehler erkannt, Pumpe läuft vielleicht noch aber Service erforderlich
5	Motorstörung	

Der Servicekode (Y) dient dem Servicetechniker oder dem Werksdienst.
Falls die Pumpe nicht reagiert, vom Stromnetz trennen und nach einigen Sekunden wieder anschliessen (RESET).

7 FEHLERSUCHE

7.1 FEHLERCODES

Die folgenden Codes erscheinen auf dem Display-Panel und den entsprechenden Modbus-Registern, um Ihnen bei der Ermittlung des Betriebsfehlers zu helfen.

Fehlercode	Beschreibung	Mögliche Ursache
E1x	Lastfehler	
E10 (drY)	Geringe Motorlast	Geringe Last wurde festgestellt. Die Pumpe läuft trocken.
E11	Hohe Motorlast	Möglicher Motorfehler oder dickflüssiges Medium.
E2x	Schutz aktiviert	
E22 (heiß)	Wandlertemperatur-Grenze	Der Kreislauf ist zu heiß und die Leistung wurde auf weniger als $2 / 3$ der Nennleistung reduziert.
E23	Wandler-Temperaturschutz	Der Kreislauf ist zu heiß für den Betrieb, die Pumpe ist gestoppt.
E24	Wandler-Überstrom	Der Überstromschutz der Hardware wurde ausgelöst.
E25	Überspannung	Die Leitungsspannung ist zu hoch.
E26	Unterspannung	Die Leitungsspannung ist zu niedrig für einen fehlerfreien Betrieb.
E27	PFC Überstrom	Der Strom in PFC Filter hat sich unkontroliert erhöht
E3x	Pumpenfehler	
E31	Der Software-Motorschutz ist aktiviert	Der durchschnittliche Motorstrom war zu hoch, die Pumpenlast ist viel höher als erwartet.
E4x	Gerätespezifische Fehlercodes	
E40	Allgemeiner Frequenzwandler-Fehler	Der Stromkreislauf hat den Selbsttest nicht bestanden.
E42 (LEd)	LED-Fehler	Einer der Display-Segmentdioden ist fehlerhaft (offen/Kurzschluss).
E43 (con)	Kommunikationsfehler	Die Display-Platine erkennt keine korrekte Verbindung zur Hauptplatine, obwohl eine Stromversorgung vorhanden ist.
E44	DC Verbindung-Fehlerstrom	Die Spannung auf dem DC -Verbindungs-Shunt (R34) liegt nicht im erwarteten Bereich.
E45	Motortemperatur außerhalb der Grenzwerte	Während MFG. TEST entspricht dies $10 \mathrm{k} \Omega, 1 \%$ Widerstand für $10^{\circ} \mathrm{C} . .30^{\circ} \mathrm{C}$ In Betrieb werden werde von $-55^{\circ} \mathrm{C} . .150^{\circ} \mathrm{C}$ erwartet.
E46	Kreislauftemperatur außerhalb der Grenzwerte.	Während MFG. TEST entspricht dies $0^{\circ} \mathrm{C} . .50^{\circ} \mathrm{C}$. In Betrieb werden werde von $-55^{\circ} \mathrm{C} .150^{\circ} \mathrm{C}$ erwartet.
E47	Spannungsreferenz außerhalb der Grenzwerte.	Der Vergleich zwischen den internen Referenzen zeigt keine Übereinstimmung.
E48	15 V außerhalb der Grenzwerte	15 V -Versorgung liefert nicht 15 V .
E49	Testlast stimmt nicht überein	Es wurde keine Testlast erkannt oder die Strommessung funktioniert nicht richtig (MFG. TEST).
E5x	Motor-Fehlercodes	
E51	Motorparameter außerhalb des Bereichs	Der Motor verhält sich nicht wie erwartet.
E52	Thermoschutz hat ausgelöst!	Motortemperatur ist zu hoch für den Betrieb
E53	Ungültiges Model gewählt	Pumpenmodel nicht zulässig oder nicht wählbar

Italiano (ITA) Manuale di installazione ed uso

INDICE
1 Introduzione 59
1.1 Utilizzo 59
1.2 Nomenclatura circolatori 59
1.3 Manutenzione, parti di ricambio e smaltimento 60
2 Sicurezza 60
3 Specifiche tecniche 60
3.1 Standard e protezioni 60
3.2 Fluidi 61
3.3 Temperatura e umidita' ambientale 61
3.4 Specifiche elettriche 61
3.5 Specifiche di interfaccia 62
4 Installazione del circolatore 64
4.1 Installazione 64
4.2 Collegamento elettrico 65
4.3 Connessione al modulo di comunicazione 65
5 Configurazione e funzionamento 66
5.1 Controllo e funzioni 66
5.2 funzionamento 72
6 Problemi e soluzioni 74
7 Ricerca guasti 74
7.1 Codici errore 74
Le curve dei circolatori si trovano a pag. 150.
Si riserva il diritto di modifiche!
Simboli utilizzati nel manuale:

Avviso di sicurezza:

Il non rispetto dell'avviso di sicurezza puo' portare a danni a persone o cose

Consigli:

Consigli, che possono facilitare l'utilizzo del circolatore.

1 INTRODUZIONE

1.1 UTILIZZO

I circolatori NMT (new motor technology) sono dedicati per la circolazione forzata del fluido all'interno di sistemi per il riscaldamento centralizzato, aereazione, climatizzazione. Sono realizzati in versione singola o gemellare. II circolatore misura in modo continuo la pressione e la portata e adatta la velocita‘ di rotazione alla pressione selezionata. La versione gemellare assicura il funzionamento continuato nel caso di rottura di uno dei circolatori. Sono disponibili due version di circolatori : NMT(D) MAX e NMT(D) MAX C. NMT(D) MAX C ha integrate l'opzione di controllo da remote mediante Ethernet, Modbus, ingressi/uscite analogiche/digitali/rele'. Sul modello NMT(D) MAX si puo' integrare anche in un secondo momento il modulo di comunicazione NMTC, in modo da rendere il circolatore controllabile da remoto come il modello NMT(D) MAX C. Per l'utilizzo del controllo remoto é disponibile un manuale istruzioni separato per il modulo NMTC, che si puo' scaricare dalla sezione documentazione del sito: "http: // imp -pumps.com/it/documentazione/. "Oppure tramite il codice QR qui sotto:

I circolatori gemellari servono a garantire un funzionamento ininterrotto dell'impianto nel caso uno dei due motori si danneggia. Il corpo pompa include una linguetta deviatrice interna e due motori elettricamente separati.

1.2 NOMENCLATURA CIRCOLATORI

1.3 MANUTENZIONE, PARTI DI RICAMBIO E SMALTIMENTO

I circolatori hanno una vita media di diversi anni se utilizzati in condizioni normali. La reperibilita‘ delle parti di ricambio e' garantita per 3 anni dalla data di scadenza della garanzia. Questo prodotto e le sue parti devono essere smaltiti nel rispetto dell'ambiente. Utilizzate i servizi di smaltimento rifiuti e se questi non sono disponibili si prega di rivolgersi al centro assistenza IMP Pumps piu‘ vicino.

2 SICUREZZA

Leggere attentamente questo manuale prima di qualsiasi installazione o utilizzo del circolatore e rispettare gli avvisi per la sicurezza. Il manuale descrive le procedure di installazione, messa in funzione e manutenzione. L'installazione e il collegamento del circolatore devono essere fatti in accordo con le locali normative e stadard vigenti.l circolatori possono essere installati e collegati solamente da personale idoneamente istruito. Il non rispetto delle norme e degli standard di sicurezza puo' portare a seri danni a persone o cose e alla perdita di qualsiasi diritto al risarcimento. Le funzioni di sicurezza del circolatore sono assicurate solamente nel caso di una manutenzione secondo le istruzioni del costruttore e all'interno dei parametri consentiti.

3 SPECIFICHE TECNICHE

3.1 STANDARD E PROTEZIONI

I circolatori sono conformi ai seguenti standard di protezione:

Classe di protezione:

IP44
Classe d'isolamento:
180 (H)
Protezione motore:
Protezione termica integrata

Specifiche di installazione		
Tipo circolatore	Pressione Nominale	Interasse [mm]
NMT(D) MAX (C) 32-120		220
NMT(D) MAX (C) 40-40		220/250
NMT(D) MAX (C) 40-80		220/250
NMT(D) MAX (C) 40-120		220/250
NMT(D) MAX (C) 40-180		220/250
NMT(D) MAX (C) 50-40	PN6 e 10	280
NMT(D) MAX (C) 50-80	PN6 e 10	280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 65-40		340
NMT(D) MAX (C) 65-80		340
NMT(D) MAX (C) 65-120		340
NMT(D) MAX (C) 80-40	PN 6	360
NMT(D) MAX (C) 80-40	PN 10	360
NMT(D) MAX (C) 80-80	PN 6	360
NMT(D) MAX (C) 80-80	PN 10	360

3.2 FLUIDI

Per un corretto funzionamento del circolatore si deve usare un fluido che sia acqua pulita oppure acqua mista ad un fluido anticongelamento, che dev'essere a sua volta dedicato a sistemi di riscaldamento centralizzato. L'acqua deve essere conforme allo standard di qualita' VDI 2035. Il fluido dev'essere privo di sostanze aggressive o esplosive, olii minerali e particelle solide o fibrose. E' vietato l'uso dei circolatori per il pompaggio di fluidi infiammabili, esplosivi e all'interno di ambienti esplosivi.

3.3 TEMPERATURA E UMIDITA' AMBIENTALE

	Temperature fluido e ambiente consentite:		
Temp. ambiente $\left[{ }^{\circ} \mathrm{C}\right]$	Temperatura fluido $\left[{ }^{\circ} \mathrm{C}\right]$		Umidita' relativa ambientale
	min.	110	
Fino a 25	-10	100	$<95 \%$
30	-10	90	
35	-10	80	
40	-10		

- L'uso al di fuori dei parametri suggeriti puo' abbreviare il periodo di vita del circolatore ed annullare i diritti di garanzia.

3.4 SPECIFICHE ELETTRICHE

3.4.1 CORRENTE, TENSIONE E POTENZA

Caratteristiche elettriche					
Circolatore	Tensione d'ingresso	Potenza nominale [W]	Corrente nominale [A]	Corrente massima $\left(I_{\text {max }}\right)[A]$	Avviamento
NMT(D) MAX (C) 32-120		370	1.8	4.3	
NMT(D) MAX (C) 40-40		110	1	4.3	
NMT(D) MAX (C) 40-80		270	1.3	4.3	
NMT(D) MAX (C) 40-120		480	2.3	4.3	
NMT(D) MAX (C) 40-180		680	3.4	4.3	
NMT(D) MAX (C) 50-40	230 VAC ± 15 \%,	160	1.3	4.3	
NMT(D) MAX (C) 50-80	47-63Hz	370	1.7	4.3	
NMT(D) MAX (C) 50-120	Funzionano anche	560	2.5	4.3	
NMT(D) MAX (C) 50-120	tensioni inferiori	830	3.6	4.3	integrato
NMT(D) MAX (C) 65-40	con minor potenza	230	1.1	4.3	
NMT(D) MAX (C) 65-80	($\mathrm{P}=\mathrm{I}_{\max } * \mathrm{U}$)	560	2.6	4.3	
NMT(D) MAX (C) 65-120		810	3.5	4.3	
NMT(D) MAX (C) 80-40		390	1.8	4.3	
NMT(D) MAX (C) 80-40		390	1.8	4.3	
NMT(D) MAX (C) 80-80		800	3.5	4.3	
NMT(D) MAX (C) 80-80		800	3.5	4.3	

3.5 SPECIFICHE DI INTERFACCIA

Per le funzioni di interfacciamento e comunicazione fare riferimento al capitolo: 5.1 Controllo e funzioni. Alcune delle funzioni sono disponibili solo nel modello NMT(D) MAX C. Informazioni dettagliate sui protocolli di comunicazione si trovano nel manuale separato per il modulo NMTC di comunicazione.

3.5.1 INGRESSI E USCITE ANALOGICI

Disponibile solo per il modello NMT(D) MAX C.
Le connessioni possono essere usate sia come ingressi che uscite a seconda di come le configuriamo. Il circolatore ha 3 connessioni: SET1, SET2 e SET3.

		Proprieta' elettriche
Tensione d'igresso	$-1-32 \mathrm{VDC}$	Quando usata come ingresso.
Tensione d'uscita	$0-12 \mathrm{VDC}$	Quando usata come uscita. Max. 5 mA di carico per singolo uscita.
Impedenza d'ingresso	$\sim 100 \mathrm{k} \Omega$	0.5 mA carico addizionale per la maggioranza delle configurazioni.
Corrente d'ingresso	$0-33 \mathrm{~mA}$	Common sink in COM, se usato come uscita.
lsolamento galvanico	4 kV fino ad $1 \mathrm{~s}, 275 \mathrm{~V}$ permanenti.	

3.5.2 RELE' IN USCITA

Disponibile solo per il modello NMT(D) MAX C.

	Proprieta' elettriche
Corrente massima	3 A
Tensione massima	230 VAC, 32 VDC

3.5.3 ETHERNET

Disponibile solo per il modello NMT(D) MAX C.

3.5.4 MODBUS

Disponibile solo per il modello NMT(D) MAX C.

Specifiche Modbus		
Protocollo dati	Modbus RTU	
Connettore Modbus	Morsettiera senza viti	$2+1$ pin. Vedere il manuale per modulo NMTC.
Tipo di connessione Modbus	RS-485	
Configurazione fili Modbus	Due-fili + comune	Conduttori: A, B and COM (Comune). Vedere il manuale per modulo NMTC.
Transceiver di comunicazione	Integrato, $1 / 8$ del carico standard	Connessione via passive taps o daisy chain.
Lunghezza cavo massima	1200 m	Vedere il manuale per modulo NMTC.
Indirizzo Slave	1-247	Default e' 245, settabile tramite Modbus. Vedere il manuale per modulo NMTC.
Terminazioni	Non presenti	Le terminazioni delle line non sono integrate. Per basse velocita'/brevi distanze, le terminazioni si possono omettere. Altrimenti terminare la linea esternamente su entrambe le terminazioni.
Velocita' di trasmissione supportate	1200, 2400, 4800, 9600, 19200, 38400 baud	Settabili tramite registro Modbus [default=19200].
Start bit	1	Fisso.
Data bits	8	Fisso.
Stop bits	102	1 stop bit minimo, fino a 2 se parita' non e' attivata [default=1]
Bit di parita'	Pari/dispari/nessuno	[default=Pari]
Diagnostica visuale del Modbus	LED2	Giallo intermittente quando rileva dati in arrive. Combinato (O) con Ethernet funzione ACT.
Numero Massimo di device Modbus	247	Limitato dal numero di indirizzi Modbus disponibili a 247. 1/8 carico nominale attiva 256 device.
Massima dimensione pacchetti Modbus	256 bytes	Incluso l'indirizzo (1) ed il CRC (2) bytes.
Isolamento	Terrra comunce (COM) con SET1, SET2 and SET3.	Il Modbus condivide il commune a terra con gli altri segnali.

4 INSTALLAZIONE DEL CIRCOLATORE

4.1 INSTALLAZIONE

Il circolatore e' protetto durante il trasporto mediante un doppio cartone. Il circolatore si solleva tramite i manici intagliati nel cartone interno oppure afferrando per le alette del dissipatore posizionate dietro alla scatola elettrica. Il circolatore é realizzato per essere montato su controflange, per le quali utilizzate tutti i bulloni a questo dedicati. Le flange sono realizzate in modo da poter essere connesse a tubazioni di pressione nominale PN6 o PN10. A causa della flangiatura combinata e' necessario in fase di installazione l'utilizzo degli adattatori (rondelle) dalla parte del circolatore. Per minimizzari rumori e vibrazioni del circolatore, questo dev'essere installato di modo che l'asse di rotazione risulti orizzontale e la parte diritta (non curvata) della tubazione intorno al circolatore sia di lunghezza almeno 5-10 $D(D=$ diametro nominale della tubazione) prima di qualunque curvatura. Vedi fig. 1. Le posizioni di installazione consentite sono visibili in fig. 2 e 3, ovvero si ottengono ruotando il corpo idraulico rispetto al motore. Il circolatore é fissato al corpo idraulico mediante 4 viti. Se le svitiamo, possiamo ruotare il corpo rispetto al motore secondo le configurazioni consentite, senza dimenticare di fare molta attenzione al posizionamento della guarnizione (fig. 4). nel momento del riavvitamento. L'ambiente di lavoro del circolatore dev'essere secco e illuminato secondo le esigenze. Il circolatore e' sigillato contro acqua e polvere secondo la classe IP indicata. Il circolatore raggiungera' la massima durata di vita se usato a temperatura ambiente e temperatura fluido moderata. L'utilizzo per lunghi periodi in condizioni estreme velocizza l'usura del circolatore. La vita delcircolatore é ridotta soprattutto da temperature elevate e funzionamento a potenze elevate.

- I circolatori sono pesanti, se necessario, farsi aiutare nel maneggiarli,
- I circolatori non devono essere installati su tubature di sicurezza!
- Il circolatore non deve essere usato come supporto nel processo di saldatura,
- Nel caso in cui la guarnizione tra la parte motore e il corpo pompa non écorrettamente posizionata , il circolatore potrebbe avere perdite di fluido e danneggiarsi,
- Nella parte di contatto tra parte motore e corpo pompa si trovano delle piccole fessure per lo scarico della condensa. Queste devono essere libere (non devono essere isolate tappate) altrimenti viene impedito il raffreddamento del motore e lo scarico della condensa, Fig. 1)
- Fluidi molto caldi rappresentano un pericolo di ustioni. Anche la parte motore puó raggiungere temperature pericolose al tatto.

4.2 COLLEGAMENTO ELETTRICO

Il circolatore integra una protezione da sovraccarico di corrente, temperatura e tensione. Non necessita di altro interruttore di protezione termica. I cavi di collegamento siano adatti ad un carico continuo alla potenza nominale e siano opportunamente protetti. E' obbligatorio l'uso della messa a terra e che sia connessa per prima. La messa a terra e' sufficiente solamente alla protezione del circolatore. I tubi abbiano una messa a terra separata.

- Il collegamento elettrico dev'essere fatto da persona abilitata e qualificata,
- Il cavo di collegamento non deve essere in contatto in alcun modo con l'involucro del motore a causa delle alte temperature che questi raggiunge,
- L'utilizzo non e' consentito a persone (inclusi i bambini) con limitate capacita' psico-fisiche e con limitata esperienza e conoscenza, tranne nel caso in cui sono sotto sorveglianza o istruiti all'utilizzo da parte di persone responsabili della loro sicurezza,
- I bambini devono essere sorvegliati, in modo da evitare che giochino con l'apparecchio,

4.3 CONNESSIONE AL MODULO DI COMUNICAZIONE

Disponibili solo nel modello NMT(D) MAX C.

4.3.1 INGRESSI/USCITE ANALOGICHE

Istruzioni dettagliate si trovano nel manuale dedicato al modulo di comunicazione NMTC.

4.3.2 USCITA A RELE'

Istruzioni dettagliate si trovano nel manuale dedicato al modulo di comunicazione NMTC.

4.3.3 ETHERNET

Istruzioni dettagliate si trovano nel manuale dedicato al modulo di comunicazione NMTC.

```
4.3.4 MODBUS
```

Istruzioni dettagliate si trovano nel manuale dedicato al modulo di comunicazione NMTC.

5 CONFIGURAZIONE E FUNZIONAMENTO

5.1 CONTROLLO E FUNZIONI

Il circolatore éconfigurabile tramite display, switch a 10-posizioni, ingressi analogici e connessione modbus o Ethernet.

- Il display ci permette di configurare e visualizzare i parametri di funzionamento (acceso/spento, modalita‘ di funzionamento, altri parametri),
- Lo switch a 10-posizioni permette di variare l'uscita a rele' e gli inressi/uscite analogiche, inoltre permette di resettare la configurazione della comunicazione del circolatore,
- Gli ingress analogici permettono il controllo del circolatore (start, stop, curva massima, curva minima, 0$10 \mathrm{~V}, 4-20 \mathrm{~mA}, .$.),
- Le uscite analogiche permettono di ricevere informazioni analogiche sullo stato (errori, velocita', modalita', portata, prevalenza),
- L'uscita a rele' segnala lo stato del circolatore,
- L'interfaccia Ethernet permette il controllo di tutte le funzioni del circolatore (parametri, ingressi digitali, errori),
- L'interfaccia Modbus permette il controllo di tutte le funzioni del circolatore (parametri, ingressi/uscite, errori).

Il circolatore puo' quindi ricevere comandi da diversi segnali e interfacce. Per questo motivo i comandi hanno diverse priorita' secondo la tabella sotto. Se due o piu' comandi sono attivi contemporaneamente, quello con priorita' maggiore avra' la precedenza.

Priorita'	Display circolatore ed Ethernet	Segnali esterni ${ }^{13}$	Modbus
1	Stop (OFF)		
2	Attiva modalita' notturna ${ }^{14}$		
3	Velocita' max. (Hi)		
4		Cruva minima	
5		Stop (RUN non attivo)	
6		Velocita' max. (Hi)	
7			Punto di riferimento

[^6]
5.1.1 DISPLAY

Tramite il display possiamo configurare diverse modalita‘ di funzionamento, parametri, accendere/spegnere e controllare eventuali messaggi di errore. Per capire le funzionalita' delle diverse modalita', fare riferimento al capitolo 5.2. Funzionamento.

1. Indicatore progressivo
2. Indicatore di valore
3. Indicatore dell'unita' di misura
4. Indicatore del regime impostato
5. Modalita' notturna
6. \oplus tasto
7. \ominus tasto
8. Θ tasto

5.1.1.1 FUNZIONE TASTI

$\Theta_{\text {Tasto }}$

Pressione breve:

- Passaggio tra i parametri verso il basso, quando non variamo i valori dei parametri,
- Passaggio tra i regimi verso il basso, quando é attiva la selezione dei regimi,
- Cambiamento dei valori verso il basso, quando impostiamo i valori dei parametri.

Pressione prolungata:

- 3 secondi in contemporanea al tasto \oplus attiva la modalita' notturna,
- 3 secondi in contemporanea al tasto \odot blocchiamo l'impostazione del circolatore,
- 5 secondi per spegnere il circolatore,
- 5 secondi in contemporanea al tasto $\oplus \mathrm{e} \oplus$ reimposta il circolatore alle impostazioni di fabbrica.

$\ominus_{\text {Tasto }}$

Pressione breve:

- Per confermare il valore o il regime imposato.

Pressione prolungata:

- 3 secondi per passare alla selezione dei regimi,
- 3 secondi in contemporanea al tasto Θ blocchiamo l'impostazione del circolatore
- 5 secondi in contemporanea al tasto $\ominus \mathrm{e} \oplus$ reimposta il circolatore alle impostazioni di fabbrica.
$\oplus_{\text {Tasto }}$
Pressione breve:
- Passaggio tra i parametri verso l'alto, quando non variamo i valori dei parametri,
- Passaggio tra i regimi verso l'alto, quando é attiva la selezione dei regimi,
- Cambiamento dei valori verso l'alto, quando impostiamo i valori dei parametri.

Pressione prolungata:

- 3 secondi in contemporanea al tasto \ominus attiva la modalita' notturna,
- 5 secondi in contemporanea al tasto \ominus e \odot reimposta il circolatore alle impostazioni di fabbrica.

5.1.1.2 ACCENSIONE E SPEGNIMENTO

Alla prima accensione il circolatore funziona secondo i parametri di fabbrica in modalita' automatica.
Alle accensioni successive il circolatore lavorera' secondo le ultime impostazioni prima dello spegnimento precedente.

Per lo spegnimento del circolatore manteniamo premuto il tasto Θ per 5 secondi finche' sul display non compare la scritta OFF. Quando il circolatore e' spento sul display rimane accesa la scritta OFF.

Per l'accensione del circolatore premiamo sul tasto Θ per un breve istante.

5.1.1.3 IMPOSTAZIONE DELLE MODALITA' DI FUNZIONAMENTO E DEI PARAMETRI

Se desideriamo cambiare la modalita‘ di funzionamento del circolatore, teniamo premuto il tasto \odot per 3 secondi dopodiche' con itasti $\oplus \mathrm{e} \Theta$ selezioniamo la modalita' desiderata e confermiamo la selezione col tasto Θ. Una volta selezionata la modalita', si attivera' anche la possiblita' di impostare il parametro ad essa relativo (tranne per la modalita' automatica), fare riferimento alle varie modalita' di funzionamento. Impostiamo il valore del parametro coi tasti $\oplus \mathrm{e} \ominus$ e confermiamo col tasto Θ, oppure confermiamo l'impostazione predefinita. Durante il funzionamento secondo una certa modalita‘, possiamo scorrere i valori dei parametri sul display tramite itasti $\oplus \mathrm{e}$ Θ. Il parametro configurabile per quella modalita' lo selezioniamo col tasto Θ e ne impostiamo il valore tramite i tasti $\oplus \mathrm{e} \oplus$. Confermiamo l'impostazione col tasto Θ.

5.1.1.4 BLOCCO DELLE IMPOSTAZIONI

Per bloccare le impostazioni di regime e parametri affinche' non vengano erroneamente modificate da altre persone, tenere premuti contemporaneamente itasti Θ e \odot per 3 secondi. Quando le impostazioni sono bloccate e' comunque possibile spegnere ed accendere il circolatore, visualizzare i parametri e resettare il circolatore (il reset sblocca il blocco delle impostazioni).

5.1.2 SWITCH A 10-POSIZIONI

Disponibile solo nel modello NMT(D) MAX C.
Nella scatola elettrica e' presente uno switch circolare per la selezione delle modalita' di funzionamento. Per la rotazione e' sufficiente inserire un cacciavite nel solco a forma di freccia e ruotare sulla posizione desiderata.

Per maggiori dettagli fare riferimento all'apposito manuale del modulo di comunicazione NMTC.

Posizione switch	Funzione	Descrizione
0	Configurazione libera	La funzione dei vari terminali e' stabilita' dall'interfaccia Ethernet.
1	Mode 1	SET1 = RUN ingresso SET2 $=$ MAX ingresso SET3 = FB (10.5 V) uscita, usato per fornire ingressi RUN e MAX. Si puo' usare in alternativa anche una sorgente di tensione esterna. RS-485 = Interfaccia Modbus.
2	Mode 2	SET1 = RUN ingresso SET2 = SPEED ingresso SET3 = FB (10.5 V) uscita, usato per fornire ingressi RUN e MAX. Si puo' usare in alternativa anche una sorgente di tensione esterna 5-24 V. RS-485 = Modbus interface
$3 . .5$	Riservato	Riservato ad uso del costruttore.
6	Indica la configurazione del rele'	LED1 e LED2 indicheranno la configurazione del rele'.
7	Variazione della configurazione del rele'	La configurazione del rele' sara' incrementata ($0->1,1->2,2->0$) quando viene accesa l'elettricita'. LED1 e LED2 indicheranno la configurazione attuale del rele'.
8	Reset del gemellare ad impostazioni di fabbrica	Identico alla Posizione9, con l'eccezione seguente: indirizzo IP del modulo viene settato a 192.168.0.246 indirizzo IP del modulo gemellare viene settato a 192.168.0.245
9	Reset ad impostazioni di fabbrica	Questa modalita' imposta il modulo di comunicazione alle impostazioni di default. NOTA: - Nell'uso di questa modalita', per evitare danni al modulo di comunicazione, disconnettere SET1, SET2 e SET3. SET1, SET2, SET3 daranno in uscita delle tensioni di test rispettivamente di $10 \mathrm{~V}, 7 \mathrm{~V}$ e 5 V . La porta RS-485 e' attivamente guidata. Il rele' funzionera' ad intermittenza. Questo e' usato per motivi di diagnosi. - Si raccomanda di disconnettere tuttil fili per evitare danni alle periferiche esterne.

5.1.3 INGRESSI/USCITE ANALOGICHE

Disponibile solo nel modello NMT(D) MAX C.

Il circolatore ha tre ingressi/uscite analogiche con varie funzionalita'. Possono essere configurate tramite l'interfaccia web (pagina "pump") o tramite Modbus.

Ingressi/Uscite	Funzione	Descrizione funzione
SET1	Run [Default - Mode 1]	Accensione/spegnimento del circolatore. Turning the pump on/off. By default activating with connection to SET3.
SET2	Max/Min [Default - Mode1]	Imposta il circolatore ad impostazione massima quando SET1 e' attivato ed alle impostazione minima quando SET1 e' disattivato. SET3
FB [Default - Mode 1]	Uscita in tensione 10V usata per attivare SET1 e SET2 mediante connessione diretta a SET3.	

5.1.4 USCITA A RELE'

Disponibile solo nel modello NMT(D) MAX C.

Configurazione	Descrizione
Run	Attiva quando il circolatore e' in funzione.
Operate	Attiva quando il circolatore e' in standby.
Error[Default]	Attiva quando il circolatore ha un problema.
No function	Il rele' non indica nulla.
Always on	Rele' sempre chiuso.

5.1.5 ETHERNET

Disponibile solo nel modello NMT(D) MAX C.
Il circolatore integra un web-server che permette l'acccesso alle funzionalita' del circolatore mediante connessione Ethernet. L'indirizzo di default per l'accesso e’ "nmtpump /" oppure 192.168.0.245/

Il web-server utilizza pagine HTML per le impostazioni e le visualizzazioni:

- Modalita‘ di funzionamento del circolatore,
- Parametri del circolatore (potenza, RPM, prevalenza, portata),
- Configurazione dell'uscita a rele'
- Configurazione degli ingressi per il controllo dall'esterno
- Errore attuale e precedente
- Dati statistici (consumo in potenza, tempi di lavoro e altro).

5.1.6 MODBUS

Disponibile solo nel modello NMT(D) MAX C.
Il circolatore ha integrato un Modbus client, tramite il quale si puo' accedere alle informazioni del circolatore usando lo standard RS 485.

Il Modbus permette di impostare e visualizzare:

- Modalita' di funzionamento del circolatore,
- Parametri del circolatore (potenza, RPM, prevalenza, portata),
- Configurazione dell'uscita a rele‘
- Configurazione degli ingressi per il controllo dall'esterno
- Errore attuale e precedente
- Dati statistici (consumo in potenza, tempi di lavoro e altro).

5.1.7 RESET ALLE IMPOSTAZIONI DI FABBRICA

Per reimpostare il circolatore alle impostazioni iniziali di fabbrica e' sufficiente tenere premuti contemporaneamente tutti e tre i tasti per 5 secondi. Il circolatore si rimettera' in modalita' automatic cancellando le impostazioni precedenti e sbloccando l'interfaccia utente (nel caso fosse stata precedentemente bloccata).

Il reset del modulo di comunicazione richiede di seguire i seguenti passi:
6. Disconnettere il circolatore dalla rete,
7. Impostare lo switch a 10-posizioni sulla posizione 9^{16} (oppure 8 nel caso del circolatore gemello sinistro),
8. Accendere e spegnere nuovamente il circolatore,
9. Impostare lo switch a 10-posizioni sulla posizione 1,
10. Accendere il circolatore.

Il modulo di comunicazione e' ora impostato alle impostazioni iniziali di fabbrica.

[^7]
5.2 FUNZIONAMENTO

Il circolatore puo' operare in 5 modalita'/regimi differenti. Possiamo impostarlo sul regime appropriato a seconda del Sistema in cui deve operare.

Modalita' di funzionamento:

- Automatica (di default),
- Pressione proporzionale,
- Pressione costante,
- Velocita' costante,
- Combinata (tutti gli indicatori led di modalita' sono spenti) - Disponibile solo nel modello NMT(D) MAX C.

(A) Modalita' Automatica

In modalita‘ automatica il circolatore regola automaticamente la pressione di lavoro in base alla situazione del sistema idraulico. In tale modo, il circolatore trova autonomamente il punto di lavoro ottimale.

L’utilizzo di questa modalita' e' raccomandato nella maggior parte dei sistemi. Non possiamo impostare parametri, ma possiamo solamente leggerne i valori.

(5)

Pressione proporzionale

Il circolatore mantiene la pressione in funzione della portata istantanea. La pressione e' uguale a quelle impostata (Hset in figura) alla massima potenza; a portata 0 e' uguale ad HQ\% della pressione Hset (HQ\% puo' essere impostata tramite l'intefraccia web se disponibile, il valore di default e' 50\%). Nei punti intermedi la pressione varia linearmente in funzione della porata. In questa modalita' possiamo impostare solamente il parametro Hset, mentre tutti gli altri
 parametri sono solamente consultabili.

Pressione costante

Il circolatore mantiene la pressione impostata (Hset in figura) dalla portata 0 alla portata a potenza massima, punto in cui la pressione inizia a diminuire. In questa modalita' possiamo impostare solamente il parametro pressione (Hset in Figura) che il circolatore manterra‘ costante. Gli altri parametri possono essere solo consultati.

(D) Velocita' costante

Il circolatore funziona alla velocita' impostata (RPMset in figura). In questa modalita' possiamo impostare solamente il parametro di velocita' che il circolatore dovra' mantenere. Gli altri parametri possono essere solo consultati.

Modalita' combinata

Permette l'impostazione di diversi parametri, ma puo' essere impostata solamente tramite l'interfaccia web. Questa modalita‘ disattiva tutte le altre.

(1)

Modalita' notturna

Quando nel circolatore e' attivata la modalita' notturna, il circolatore alterna automaticamente la modalita' attuale impostata alla modalita' notturna. Il passaggio da una all'altra e' in funzione della temperatura del fluido nel sistema idraulico. Se il circolatore misura una caduta di temperatura del fluido di $15-20^{\circ} \mathrm{C}$ (nell'arco di 2 ore), il LED relativo alla modalita' notturna inizia a lampeggiare e il circolatore passa alla modalita' notturna. Se la temperatura invece sale, il lampeggio si ferma e il circolatore ritorna alla modalita' in cui operava precedentemente.

La modalita' notturna puo' funzionare solamente in complement alle altre modalita', non é una modalita' che puo' funzionare da sola.

5.2.1 FUNZIONAMENTO GEMELLARE

Il circolatore gemellare ha un corpo pompa doppio con due motori separate ed una linguatte deviatrice, che si posiziona in modo automatico in base al flusso del fluido. I due motori comunicano tra di loro tramite una connessione Ethernet disponibile solo nel modello NMT(D) MAX C. Sconsigliamo l'uso delle modalita' notturna sui gemellari.

I circolatori possono lavorare in diversi modi, I'alternanza di funzionamento tra i due motori e' impostata dal modulo di comunicazione NMTC:

- Alternanza [impostazione predefinita] - Un motore lavora mentre l'altro e' in standby. I motori si alternano il lavoro ogni 24 ore oppure quando il motore in funzione presenta un errore.
- Backup - Un motore lavora mentre l'altro e' in standby. Se si presenta un errore sul motore in funzione, si attiva automaticamente il secondo motore. Questa modalita' si imposta semplicemente spegnendo il circolatore che deve stare in standby, ovvero tenendo premuto per 5 secondi il tasto Θ.
- Parallelo - Entrambi i motori lavorano in contemporanea con la stessa impostazione di pressione in modalita' a pressione costante. Questo viene usato quando si vogliono ottenere maggiori portate di quanto un solo motore riesce a raggiungere. Quando un motore raggiunge il limite in portata, il secondo si attiva per raggiungere la portata desiderata.
Questa modalita' e' impostata quando impostiamo entrambi i motori nella modalita' a pressione costante.

Nel modello NMT(D) MAX (senza modulo di comunicazione NMTC) il passaggio da un motore all'altro dev'essere fatto manualmente dall'operatore.

6 PROBLEMI E SOLUZIONI

Se il circolatore si guasta, sul display compare il codice dell'errore che causa il guasto. Gli errori sono segnalati nel seguente modo:

Categoria errore(X)	Descrizione errore	Possibili cause e soluzioni
1	Funzionamento a vuoto	Nel circolatore non c'e' fluido. Verificare la presenza di fluido nel sistema.
2	Sovraccarico del motore	Sovraccarico di portata oppure motore bloccato. Se l'errore si ripete, controllare se il rotore gira o e' bloccato.
3	Motore troppo caldo	Il motore ha raggiunto una temperatura troppo alta e si e' attivata la protezione preventiva. Quando si raffreddera' ripartira autonomamente.
4	Errore sull'elettronica	Si e' verificato un errore sul circuito elettronico. Il circolatore puo' continuare a lavorare ma ha bisogno di un intervento in assitenza.
5	Rottura del motore/statore	Probabilmente si e' verificato una rottura dell'avvolgimento del motore. Il circolatore necessita di intervento in assitenza.

Il Codice di Servizio (Y) e' dedicato al personale di manutenzione o all’assistenza tecnica.
Se il circolatore non risponde, staccatelo dalla rete elettrica e riattaccatelo nuovamente.

7 RICERCA GUASTI

7.1 CODICI ERRORE

I codici elencati di seguito compaiono sul pannello di visualizzazione e nei registri Modbus corrispondenti per aiutare l'utente a individuare la causa del malfunzionamento.

Codice errore	Descrizione	Probabile causa	
E1x	Errori di carico		
E10 (drY)	Carico motore insufficiente	È stato rilevato un carico insufficiente. La pompa stafunzionando a secco.	
E11	Carico motore eccessivo	Motore difettoso o presenza di mezzo viscoso.	
E2x	Protezione attiva		
E22 (hot)	Limite di temperatura del convertitore	Circuito surriscaldato con riduzione della potenza sottoi $2 / 3$ della potenza normale.	
E23	Protezione temperatura convertitore	Circuito troppo surriscaldato per funzionare, la pompasi arresta.	
E24	Sovracorrente nel convertitore	Si è attivato il dispositivo di protezione dalle sovracorrenti.	
E25	Sovratensione	La tensione di rete è eccessiva.	
E26	Sottotensione	La tensione di rete è insufficiente a garantire il correttofunzionamento.	
E27	Sovracorrente su PFC	Non si riesce a controllare la corrente sul PFC	
E3x	Errori della pompa		
E31	Protezione software motore attiva	Corrente media del motore troppo alta, carico della pompa molto superiore al previsto.	
E4x	Codicidierrorispecificidel dispositivo		
E40	Erroregenerale convertitore di frequenza	I collegamenti elettrici non hanno superato la verifica automatica.	
E42 (LEd)	LED difettoso	Uno dei diodi dei segmenti di visualizzazione èdifettoso (aperto/in corto circuito).	
E43 (con)	Comunicazione non riuscita	La scheda del display non rileva alcun collegamento funzionante con la scheda madre, ma il dispositivo è alimentato.	
E44	Scostamento corrente DC link	La tensione sulla derivazione del DClink (R34) nonè compresa nell'intervallo previsto.	
E45	Temperatura del motore non compresa nei limiti	Durante test in fabbrica, valore 10k resistore 1% per 10..30C. Durante il funzionamento, i valori previsti sono compresitra $-55^{\circ} \mathrm{Ce} 150^{\circ} \mathrm{C}$.	
E46	Temperatura circuito non compresa nei limiti	Durante test in fabbrica, il valore è compreso tra O e $50^{\circ} \mathrm{C}$. Durante il funzionamento, i valori previsti sonocompresi tra $-55^{\circ} \mathrm{Ce} 150^{\circ} \mathrm{C}$.	
E47	Riferimento ditensione non compreso neilimiti.	\|	confrontotrai riferimentiinterni non corrisponde.
E48	Tensione 15V non compresa nei limiti	La tensione di alimentazione da 15 V non è 15 V .	
E49	Carico di prova non corrisponde	Nessun carico di prova rilevato o la misurazione della correntenon funzionacorrettamente (TEST in fabbrica).	
E5x	Codicidierrore delmotore		
E51	Parametridel motore non compresi nell'intervallo	Il motore non si comporta come previsto.	
E52	Protezione termica attiva	Le temperature nel motore sono troppo elevate per il funzionamento.	
E53	Selezionato un modello inadatto	Modello pompa inadatto o parametri pompa fuori campo	

Suomenkielinen (FI) Asennus- ja käyttöohje

SISÄLTÖ
1 Yleistietoja 77
1.1 Käyttötarkoitus 77
1.2 Pumpun tyyppimerkintä 77
1.3 Pumpun huolto, varaosat ja käytöstä poistaminen 78
2 Turvallisuus 78
3 Tekniset tiedot 78
3.1 Standardit ja suojaluokitukset 78
3.2 Pumpattava aine 79
3.3 Lämpötilat ja ympäristön kosteus 79
3.4 Sähköiset tiedot 79
3.5 Tiedonsiirron tiedot 80
4 Pumpun asennus 82
4.1 Asennus putkistoon 82
4.2 Sähköasennus 83
4.3 Tiedonsiirron asennus 83
5 Asetukset ja käyttö 84
5.1 Ohjaus ja toiminnot 84
5.2 Käyttö 90
6 Viat ja vianetsintä 92
7 Vianmääritys 92
7.1 Vikakoodit 92
Pumppukäyrät ovat sivulla 150

Oikeus muutoksiin pidätetään!
Käyttöohjeessa käytettävät symbolit:

Varoitus:
Varotoimenpiteet, joiden laiminlyönti voi johtaa henkilövahinkoon ja laitevaurioon

Huomaa:
Pumpun käsittelyä helpottavia vihjeitä.

1 YLEISTIETOJA

1.1 KÄYTTÖTARKOITUS

NMT (New Motor Technology) -kiertovesipumput on tarkoitettu nestemäisen väliaineen siirtoon vesikiertoisissa lämmitysjärjestelmissä sekä ilmastointi- ja ilmanvaihtojärjestelmissä. Ne on suunniteltu käytettäviksi yhden pumpun järjestelmänä tai kaksoispumppukokoonpanona, joiden nopeutta säädetään elektronisesti. Pumppu mittaa jatkuvasti painetta ja virtaamaa ja säätää nopeuden asetetun säätötavan mukaisesti.Pumppuja on kahta mallia: NMT(D) MAX ja NMT(D) MAX C. NMT(D) MAX C -pumpuissa on mahdollisuus kaukosäätöön ja valvontaan Ethernetin, Modbusväylän, analogisten tulojen ja lähtöjen kautta sekä releohjaukseen. NMT(D) MAX -pumppuihin on mahdollista hankkia NMTC-lisämoduuli, jonka avulla pumpulle saadaan samanlaiset tiedonsiirtovaihtoehdot kuin NMT(D) MAX C:ssä. MAX C -pumppujen yksityiskohtaiset tiedonsiirto-ohjeet löytyvät NMTC-moduulin erillisistä ohjeista verkkosivuilla: "http: // imp -pumps.com/en/documentation/." Tai QR-koodin avulla:

Kaksoispumpun käytön päätarkoitus on keskeytymätön toiminta siltä varalta, että toinen pumpuista vikaantuu. Yhteinen pumppupesä on varustettu läppäventtiilillä ja kahdella moottoriosalla, jotka liitetään erikseen sähköverkkoon.

1.2 PUMPUN TYYPPIMERKINTÄ

1.3 PUMPUN HUOLTO, VARAOSAT JA KÄYTÖSTÄ POISTAMINEN

Pumput on suunniteltu toimimaan ilman huoltoa vuosien ajan. Varaosia on saatavana vähintään 3 vuoden ajan takuuajan umpeutumisen jälkeen.

Pumppu ja sen osat on hävitettävä ympäristöystävällisellä tavalla. Käytä jätteenkeruupalveluja; ellei tämä ole mahdollista, ota yhteys lähimpään IMP-pumppujen huoltoon tai valtuutettuun korjaamoon.

2 TURVALLISUUS

Lue nämä ohjeet huolellisesti ennen pumpun asennusta tai käyttöä. Niiden tarkoitus on auttaa sinua asennuksessa, käytössä ja huollossa ja parantaa turvallisuuttasi. Asennuksessa on aina noudatettava paikallisia standardeja ja direktiivejä. Pumppuja saa huoltaa vain ammattitaitoinen henkilöstö.

Käyttöohjeen noudattamatta jättäminen voi johtaa tuotteen vaurioitumiseen tai henkilövahinkoon ja mitätöidä takuun. Takaamme turvallisen toiminnan vain jos pumppu asennetaan, sitä käytetään ja huolletaan tämän ohjeen mukaisesti..

3 TEKNISET TIEDOT

3.1 STANDARDIT JA SUOJALUOKITUKSET

Pumput on valmistettu seuraavien standardien ja suojaluokitusten mukaisesti:

Kotelointiluokkay:

IP44
Eristysluokka:
180 (H)
Moottorinsuoja:
Terminen - integroitu

Asennustiedot		
Pumpputyyppi	Nimellispaine	Rakennepituus [mm]
NMT(D) MAX (C) 32-120		220
NMT(D) MAX (C) 40-40		220/250
NMT(D) MAX (C) 40-80		220/250
NMT(D) MAX (C) 40-120		220/250
NMT(D) MAX (C) 40-180		220/250
NMT(D) MAX (C) 50-40	PN6 ja 10	280
NMT(D) MAX (C) 50-80		280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 65-40		340
NMT(D) MAX (C) 65-80		340
NMT(D) MAX (C) 65-120		340
NMT(D) MAX (C) 80-40	PN 6	360
NMT(D) MAX (C) 80-40	PN 10	360
NMT(D) MAX (C) 80-80	PN 6	360
NMT(D) MAX (C) 80-80	PN 10	360

3.2 PUMPATTAVA AINE

Pumpattavan aineen tulee olla vain puhdasta vettä tai keskuslämmitysjärjestelmään soveltuvaa puhtaan veden ja glykolin seosta. Veden on täytettävä standardin VDI 2035 laatuvaatimukset. Neste ei saa sisältää syövyttäviä tai räjähtäviä lisäaineita, mineraaliöljyseoksia tai kiinteitä tai kuitumaisia hiukkasia. Pumppua ei saa käyttää syttyvien, räjähtävien nesteiden pumppaamiseen eikä räjähdysherkässä ympäristössä.

3.3 LÄMPÖTILAT JA YMPÄRISTÖN KOSTEUS

Ympäristön ja nesteen sallittu lämpötila:			
Ympäristön lämpötila	Nesteen lämpötila [${ }^{\circ} \mathrm{C}$]		
[${ }^{\text {C }}$]	min.	maks.	riston suht. kosteus
Maks. 25	-10	110	
30	-10	100	<95
35	-10	90	<95 \%
40	-10	80	

- Suositusarvojen vastainen käyttö voi lyhentää pumpun käyttöikää ja mitätöidä takuun.
3.4 SÄHKÖISET TIEDOT

3.4.1 VIRTA, JÄNNITE JA NIMELLISTEHO

Sähköiset nimellisarvot:					
Pumppu	Nimellisjännite	Nimellisteho [W]	Nimellisvirta [A]	Nimellisvirta $\left(I_{\max }\right)[A]$	Käynnistys
NMT(D) MAX (C) 32-120		370	1.8	4.3	
NMT(D) MAX (C) 40-40		110	1	4.3	
NMT(D) MAX (C) 40-80		270	1.3	4.3	
NMT(D) MAX (C) 40-120		480	2.3	4.3	
NMT(D) MAX (C) 40-180		680	3.4	4.3	
NMT(D) MAX (C) 50-40	$0 \mathrm{VAC} \pm 15$ \%,	160	1.3	4.3	
NMT(D) MAX (C) 50-80	$47-63 \mathrm{~Hz}$	370	1.7	4.3	
NMT(D) MAX (C) 50-120	Pumput voivat toimia	560	2.5	4.3	Sisäinen
NMT(D) MAX (C) 50-120	alemmalla jännitteellä	830	3.6	4.3	käynnistin
NMT(D) MAX (C) 65-40	pienemmällä teholla	230	1.1	4.3	
NMT(D) MAX (C) 65-80	($\mathrm{P}=\mathrm{I}_{\text {max }} *$)	560	2.6	4.3	
NMT(D) MAX (C) 65-120		810	3.5	4.3	
NMT(D) MAX (C) 80-40		390	1.8	4.3	
NMT(D) MAX (C) 80-40		390	1.8	4.3	
NMT(D) MAX (C) 80-80		800	3.5	4.3	
NMT(D) MAX (C) 80-80		800	3.5	4.3	

3.5 TIEDONSIIRRON TIEDOT

Katso tiedonsiirtotoiminnot kappaleesta 5.1 Ohjaus ja toiminnot. Osa toiminnoista on käytettävissä vain NMT(D) MAX C -pumpuissa. Yksityiskohtaiset tiedot käytettävistä protokollista löytyvät tiedonsiirron käsikirjasta.

3.5.1 ANALOGISET TULOT JA LÄHDÖT

Käytettävissä vain NMT(D) MAX C -pumpuissa.
Liitäntöjä voidaan käyttää joko tuloina tai lähtöinä, asetuksista riippuen. Pumpussa on 3 liitintä: SET1, SET2 ja SET3.

		Sähköiset ominaisuudet
Ottojännite	$-1-32 \mathrm{VDC}$	Kun käytetään tulona.
Antojännite	$0-12 \mathrm{VDC}$	Kun käytetään lähtönä. Max. 5 mA kuormitus yksittäisessä lähdössä.
Ottoimpedanssi	$\sim 100 \mathrm{k} \Omega$	$0,5 \mathrm{~mA}$ lisäkuormitus useimmissa kokoonpanoissa.
Virtaotto	$0-33 \mathrm{~mA}$	Yhteinen virtaotto COM-portissa, jos käytetään lähtönä .
Galvaaninen erotus		Jännite 4 kV 1 s asti, 275 V jatkuvana .

3.5.2 RELELÄHTÖ

Käytettävissä vain NMT(D) MAX C -pumpuissa.

	Sähköiset ominaisuudet
Nimellisvirta	3 A
Maksimijännite	230 VAC, 32 VDC

3.5.3 ETHERNET

Käytettävissä vain NMT(D) MAX C -pumpuissa.

	Sähköiset ominaisuudet	
Liitin	RJ-45, 10BASE-T, 10 Mbit/s.	
Palvelut	-	
	Web-palvelin (portti 80)	
	-	
Ohjelmapäivitykset web-rajapinnan kautta.		
Oletus-IP-osoite	Modbus RTU -optio TCP/IP:n kautta	

3.5.4 MODBUS

Käytettävissä vain NMT(D) MAX C -pumpuissa.

Modbus-väylän tiedot		
Dataprotokolla	Modbus RTU	
Modbus-liitin	Jousiliittimet	2+1 nastaa. Katso NMTC-moduulin käyttöohje.
Modbus-liitännän tyyppi	RS-485	
Modbusin johdinjärjestys	2 johdinta + yhteinen	Johtimet: A, B ja COM (yhteinen). Katso NMTC-moduulin käyttöohje.
Communication transceiver	Integroitu, 1/8 vakiokuormasta	Liitäntä joko passiivisilla jakajilla tai ketjutuksella.
Kaapelin maks. Pittus	1200 m	Katso NMTC-moduulin käyttöohje.
Slave-osoite	1-247	Oletus 245, asetettavissa Modbusin kautta. Katso NMTC moduulin käyttöohje.
Terminointi	Ei ole	Terminointia ei ole integroituna. Hitailla nopeuksilla/lyhyillä etäisyyksillä terminointia ei tarvita. Muutoin linja terminoidaan ulkoisesti molemmissa päissä.
Tuetut siirtonopeudet	$\begin{aligned} & 1200,2400,4800,9600, \\ & 19200,38400 \text { baud } \end{aligned}$	Asetettavissa Modbusin rekisterin kautta [oletus=19200].
Aloitusbitti	1	Kiinteä
Databitit	8	Kiinteä.
Lopetusbitit käytössä	1 tai 2	Vähintään 1 lopetusbitti, enintään 2, kun pariteetti ei ole [oletus=1]
Pariteettibitti	Even/odd/none	[oletus=Even]
Modbus-laitteiden diagnostiikka	LED2	Vilkkuu keltaisena, kun tiedon vastaanotto tunnistetaan. Yhdistetty (TAI) Ethernetin ACT-toiminnon kanssa.
Modbus-laitteiden enimmäismäärä	247	Modbus-osoitteiden määrä on enintään 247. 1/8 nimelliskuorma mahdollistaa 256 laitetta.
Modbus-paketin enimmäiskoko	256 tavua	Sisältäen osoite (1) ja CRC (2) -tavut.
Eristys	Yhteinen maa (COM) ja SET1, SET2 ja SET3.	Modbus jakaa yhteisen maan muiden signaalien kanssa.

4 PUMPUN ASENNUS

4.1 ASENNUS PUTKISTOON

Pumppu suojataan kaksoispakkauksella kuljetuksen ajaksi. Se voidaan nostaa laatikosta sisäpuolen kahvoista tai jäähdytyslevystä.

Kun pumput asennetaan liitoslaippoihin, kaikki ruuvit on asennettava. Yhdistelmälaipat on mitoitettu putkille, joiden nimellispaine on PN6 tai PN10. Yhdistelmälaippojen rakenteen takia pumpun puolelle on asennettava aluslevyt.

Mahdollisimman tärinättömän ja meluttoman käynnin varmistamiseksi pumppu tulee asentaa putkistoon pumpun 1-1 akseli vaakasuoraan kuten kuvassa 1. Putkien on oltava suoria vähintään 5-10 $D(D=$ putken nimellishalkaisija) matkalla laipoista alkaen.

Moottoriosa voidaan kääntää haluttuun asentoon (sallitut asennot on esitetty kuvissa 2 ja 3). Moottoriosa on kiinnitetty pumppupesään neljällä ruuvilla. Avaa ruuvit ensin ja käännä sitten moottoriosaa (kuva 4).

Pumpun ympäristön tulee olla kuiva ja tarkoituksenmukaisesti valaistu. Pumppu ei saa joutua suoraan kosketukseen muiden esineiden kanssa. Pumpun tiivisteet estävät pölyn ja hiukkasten pääsyn sisään IP-luokan mukaisesti. Varmista, että liitäntäkotelon kansi on asennettu ja että läpivientiholkit on kiristetty tiiviiksi.

Pumpun käyttöiästä tulee mahdollisimman pitkä, kun sitä käytetään normaalissa huoneenlämpötilassa ja kohtuullisella nesteen lämpötilalla. Pitkäaikainen käyttö korkeissa lämpötiloissa voi aiheuttaa kulumista. Suuri teho ja korkeat lämpötilat nopeuttavat kulumista.

- Väärin tehdyt liitännät tai ylikuormitus voivat aiheuttaa pumpun pysähtymisen tai pysyvän vaurioitumisen.
- Pumput voivat olla raskaita. Pyydä tarvittaessa nostoapua,
- Pumppua ei saa käyttää sammutusputkissa,
- Pumppua ei saa käyttää tukena hitsattaessa!
- Uudelleen koottaessa tiivisteen tiiviys tulee varmistaa huolellisesti. Muuten vesi saattaa vaurioittaa pumpun sisäosia,
- Pumpun moottorikotelon ja pesän välisen kanavan on jäätävä auki (sitä ei saa lämpöeristää); sen tukkiminen voi haitata jäähdytystä ja kondenssiveden poistumista,
- Kuuma neste voi aiheuttaa palovammoja! Myös moottori voi kuumetessaan aiheuttaa vamman.

4.2 SÄHKÖASENNUS

Pumpussa on integroitu ylivirtavaroke ja -suojaus, ylikuumenemissuoja ja perussuojaus ylijännitettä vastaan. Siksi ulkoista lämpösuojakytkintä ei tarvita. Liitäntäkaapelien tulee olla riittävän kokoiset nimellisteholle ja niiden tulee olla asianmukaisesti sulakesuojattuja. Maajohdon liitäntä on oleellisen tärkeä turvallisuuden kannalta. Se tulee kytkeä ensimmäisenä. Maadoitus on tarkoitettu vain pumpun suojaksi. Putket on maadoitettava erikseen.

- Pumpun liitännät saa tehdä vain ammattitaitoinen henkilöstö
- Liitäntäkaapelia kytkettäessä on varmistettava, että se ei joudu kosketuksiin laitteen pinnan kanssa korkean lämpötilan takia.,
- 8-vuotiaat ja sitä vanhemmat lapset sekä henkilöt, joiden fyysinen tai psyykkinen toimintakyky tai aistit ovat heikentyneet tai joilla ei ole riittävää kokemusta ja tietoja, saavat käyttää laitetta vain valvonnan alaisina ja kun he saavat ohjeet laitteen turvallisesta käytöstä ja ymmärtävät käyttöön liittyvät vaarat,
- Älä päästä lapsia leikkimään laitteella,
- Lapset eivät saa puhdistaa tai huoltaa laitetta ilman valvontaa.

4.3 TIEDONSIIRRON ASENNUS

Käytettävissä vain NMT(D) MAX C -pumpuissa.

4.3.1 ANALOGINEN TULO/LÄHTÖ

Tarkka kuvaus löytyy tiedonsiirtomoduulin käyttöohjeesta.

4.3.2 RELELÄHTÖ

Tarkka kuvaus löytyy tiedonsiirtomoduulin käyttöohjeesta.

4.3.3 ETHERNET

Tarkka kuvaus löytyy tiedonsiirtomoduulin käyttöohjeesta.

4.3.4 MODBUS

Tarkka kuvaus löytyy tiedonsiirtomoduulin käyttöohjeesta.

5 ASETUKSET JA KÄYTTÖ

5.1 OHJAUS JA TOIMINNOT

Pumppua voidaan ohjata käyttöpaneelista, 10-asentoisella kytkimellä, analogisten tulojen, Modbus- tai Ethernetliitännän avulla.

- Näyttöpaneelista ohjataan pumppua ja siinä näytetään pumpun säätötavat, parametrit ja päällä/pois-tila,
- 10-asentoisella kytkimellä voidaan muuttaa relelähtöä, analogisia tuloja/lähtöjä sekä nollata pumpun tiedonsiirtoasetukset,
- Analogisilla tuloilla ohjataan pumppua (käynnistys, pysäytys, maks.käyrä, min.käyrä, 0-10 V, 4-20 mA, ...)
- Analogisten lähtöjen avulla voidaan lukea pumpun toimintatiedot (viat, nopeus, säätötapa, virtaama, nostokorkeus),
- Relelähtö ilmoittaa pumpun tilan,
- Ethernet-liitäntöjen avulla voit ohjata kaikkia pumpun toimintoja ja asetuksia (pumpun muuttujat, digitaaliset tulot, vikaloki),
- Modbus-liitännän avulla voit lukea kaikki parametrit ja asetukset (pumpun muuttujat, analogiset tulot/lähdöt, vikaloki).

Pumpun toimintaan vaikutetaan useilla signaaleilla. Tästä syystä asetuksilla on eri prioriteetteja alla olevan taulukon mukaisesti. Jos kaksi tai useampia toimintoja on aktiivisena samanaikaisesti, etusija on toiminnolla, jolla on korkeampi prioriteetti.

Prioriteetti	Pumpun ohjauspaneeli ja Ethernet-asetukset	Ulkoiset signaalit ${ }^{17}$	Modbus-ohjaus
1	Seis (OFF)		
2	Yötila aktiivinen ${ }^{18}$		
3	Maks. Nopeus (Hi)		
4		Minimikäyrä	
5		Seis (RUN ei aktiivinen)	Seis
6		Maks. nopeus (Hi) ${ }^{19}$	
7			
8			
9	Referensensipiste		

[^8]
5.1.1 NÄYTTÖPANEELI

Voit ohjata pumppua näyttöpaneelista ja siinä näytetään pumpun säätötavat, päällä/pois-tila, pumpun parametrit ja vikailmoitukset. Katso pumpun säätötavat kappaleesta 5.2. Käyttö.

5.1.1.1 NÄPPÄINTOIMINNOT

$\Theta_{\text {Näppäin }}$

Lyhyt painallus:

- Parametrien vieritys alaspäin, kun et ole muuttamassa asetusarvoja.
- Säätötapojen vieritys alaspäin, kun säätötavan valinta on valittuna.
- Parametrien muuttaminen alaspäin, kun olet asettamassa asetusarvoja.

Pitkä painallus:

- 3 sekuntia yhdessä \oplus kanssa kytkee yötilan päälle,
- 3 sekuntia yhdessä @ kanssa lukitsee pumpun nykyisen toiminnon,
- 5 sekuntia kytkee pumpun pois päältä,
- 55 sekuntia yhdessä $\oplus j a \oplus$ kanssa palauttaa pumpun tehdasasetukset.

Näppäin

Lyhyt painallus:

- Vahvistaa juuri valitun säätötavat ja asetusarvot.

Pitkä painallus:

- 3 sekuntia säätötavan valitsemiseksi,
- 3 sekuntia yhdessä \ominus kanssa lukitsee pumpun nykyisen toiminnon,
- 5 sekuntia yhdessä Θ ja \oplus kanssa palauttaa pumpun tehdasasetukset.
$\oplus{ }^{\text {Näppäin }}$ Lyhyt painallus:
- Parametrien vieritys ylöspäin, kun et ole muuttamassa asetusarvoja.
- Säätötapojen vieritys ylöspäin, kun säätötavan valinta on valittuna.
- Parametrien muuttaminen ylöspäin, kun olet asettamassa.

Pitkä painallus:

- 3 sekuntia yhdessä \ominus kanssa kytkee yötilan päälle,
- 5 sekuntia yhdessä \ominus ja \odot kanssa palauttaa pumpun tehdasasetukset.

5.1.1.2 PUMPPU KÄYNTIIN/SEIS

Ensimmäisellä käynnistyskerralla pumppu toimii tehdasasetuksena automaattisäädöllä.
Seuraavissa käynnistyksissä pumppu toimii viimeisillä asetuksilla, jotka olivat asetettuna ennen pysäyttämistä.
Pysäytä pumppu pitämällä Θ painettuna 5 sekunnin ajan, kunnes näytölle tulee OFF. Kun pumppu on pysäytettynä, numeronäytössä lukee OFF.

Käynnistä pumppu painamalla Θ lyhyesti.

5.1.1.3 PUMPUN TILAT JA PARAMETRIT

Vaihtaaksesi tilasta toiseen pidä \odot painettuna 3 sekunnin ajan ja valitse sitten haluamasi tila \oplus ja Θ näppäimellä. Vahvista valinta painamalla \odot.
Tilan vahvistamisen jälkeen parametrit, jotka voidaan asettaa, näkyvät vilkkuvina (paitsi automaattitilassa). Aseta tarvittaessa parametrin arvo \oplus ja Θ näppäimillä ja vahvista asetus painamalla \odot tai painamalla \odot hyväksyäksesi parametrin.
Voit vierittää tilan parametreja \oplus ja Θ näppäimillä. Voit valita säädettävän parametrin (katso kunkin tilan kohdalta) painamalla $\oplus j$ asettaa haluamasi arvon $\oplus j a \ominus$ näppäimillä. Vahvista valittu arvo painamalla Θ.

5.1.1.4 PUMPUN TOIMINNAN LUKITSEMINEN

Lukitaksesi pumpun nykyisen tilan ja asetukset tai vapauttaaksesi lukituksen pidä Θ ja Θ painettuna 3 sekunnin ajan. Pumpun ollessa lukittuna on mahdollista käynnistää ja pysäyttää pumppu, selata parametreja ja palauttaa pumpun tehdasasetukset, mikä myös vapauttaa pumpun lukituksen.

5.1.2 10-ASENTOINEN KYTKIN

Käytettävissä vain NMT(D) MAX C -pumpuissa.
Liitäntäkotelossa on kierrettävä tilan valintakytkin. Sitä voidaan kiertää asettamalla ruuvitaltta varoen nuolen kohdalle ja kiertämällä kytkin haluttuun asetukseen.

Kytkimen asetus tulee voimaan, kun pumppu kytkeytyy päälle! Lisätietoja eri tiloista löytyy tiedonsiirron ohjekirjasta.

Valintakytkimen asento	Toiminto	Kuvaus
0	Vapaa konfigurointi	Päätelaitteen toiminnot ohjelmoidaan Ethernet-rajapinnan kautta.
1	Tila 1	$\begin{aligned} & \text { SET1 }=\text { RUN-tulo } \\ & \text { SET2 }=\text { MAX-tulo } \\ & \text { SET3 }=\text { FB (10.5 V) lähtö, käytetään syöttämään RUN- ja MAX-tuloja. Myös } \\ & \text { ulkoista jännitelähdettä voidaan käyttää. } \\ & \text { RS-485 = Modbus liitäntä. } \end{aligned}$
2	Tila 2	SET1 = RUN-tulo SET2 $=$ SPEED-tulo SET3 = FB (10.5 V) lähtö, käytetään syöttämään RUN- ja MAX-tuloja. Myös ulkoista 5-24 V jännitelähdettä voidaan käyttää. RS-485 = Modbus liitäntä.
$3 . .5$	Varattu	Varattu tulevaan tai asiakaskohtaiseen käyttöön.
6	Näyttää releen konfiguroinnin	LED1 ja LED2 näyttävät releen konfiguroinnin.
7	Releen Konfiguroinnin muutos	Releen konfigurointi kasvaa ($0->1,1->2,2->0$) kun virta is turned on kytketään päälle. LED1 ja LED2 näyttävät releen nykyisen.
8	Kaksoispumpun tehdasasetukse	konfiguroinnin. Sama kuin Tila 9, poikkeuksena: moduulin IP-osoitteen asetus on 192.168.0.246 Kaksoispumpun IP-osoitteen asetus on 192.168.0.245
9	Tehdasasetukset	Tämä tila palauttaa tiedonsiirtorajapinnan oletusarvot. Tärkein tavoite on palauttaa oletusasetukset. HUOMAA: - Irrota kaikki SET1-, SET2- ja SET3-liitännät käyttäessäsi tätä mode tilaa estääksesi mahdolliset haitat ohjaimelle. SET1, SET2, SET3 antavat testijännitteet järjestyksessä $10 \mathrm{~V}, 7 \mathrm{~V}$ ja 5 V . RS-485porttia ohjataan aktiivisesti. Rele vaihtaa asentoa. Tätä käytetään testaustarkoituksiin. - Suosittelemme irrottamaan kaikki moduulin johtimet estääksesi mahdolliset haitat ohjaimille.

5.1.3 ANALOGINEN TULO/LÄHTÖ

Käytettävissä vain NMT(D) MAX C -pumpuissa.

T Pumpussa on kolme analogista tuloa/lähtöä, joilla on eri toiminnot. Ne voidaan konfuguroida web-rajapinnan (sivu "pump") tai Modbus-väylän kautta.

Tulo/lähtö	Toiminto	Toiminnan kuvaus
SET1	Run [Oletus - Tila 1]	Pumpun käynnistys/pysäytys. Oletuksena aktivoituu liitettäessä SET3:een.
SET2	Max/Min [Oletus - Tila 1]	Asettaa pumpun maksimiasetuksiin, kun SET1 on aktiivinen, ja min. asetuksiin kun SET1 ei ole aktiivinen .
SET3	FB [Oletus - Tila 1]	10 V jännitelähtöä käytetään aktivoimaan SET 1 ja _kytkemällä ne SET3:een.

5.1.4 RELELÄHTÖ

Käytettävissä vain NMT(D) MAX C -pumpuissa.

Konfigurointi	Kuvaus
Run	Ilmaisee pumpun käynnin.
Operate	Ilmaisee pumpun valmiustilan.
Error[Oletus]	Ilmaisee pumpun vikatilan.
No function	Relelähtö ei ilmaise mitään.
Always on	Rele aina suljettuna.

5.1.5 ETHERNET

Käytettävissä vain NMT(D) MAX C -pumpuissa.
Pumpussa on integroitu web-palvelin, jonka avulla pääset suoraan pumppuusi olemassa olevan Ethernet-yhteyden kautta. Pumpun oletusosoite on "nmtpump /" tai 192.168.0.245/

Web-palvelin käyttää HTML-sivuja seuraaviin asetuksiin/tietojen näyttämiseen:

- Säätötavan asetukset
- Säätöparametrit (teho, kierrosluku, nostokorkeus, virtaama)
- Releen asetukset
- Ulkoisten ohjaustulojen asetukset
- Aktiiviset viat ja vikaloki
- Pumpun tilastot (tehonkulutus, käyntiaika jne.)

5.1.6 MODBUS

Käytettävissä vain NMT(D) MAX C -pumpuissa.
Pumpussa on integroitu Modbus client, jonka kautta päästään pumpputietoihin käyttämällä RS 485 -standardia. Modbusin kautta voidaan säätää seuraavat asetukset ja katsoa seuraavia tietoja:

- Säätötavan asetukset,
- Säätöparametrit (teho, kierrosluku, nostokorkeus, virtaama),
- Releen asetukset,
- Ulkoisten ohjaustulojen asetukset,
- Aktiiviset viat ja vikaloki,
- Pumpun tilastot (tehonkulutus, käyntiaika jne.).

5.1.7 PUMPUN TEHDASASETUSTEN PALAUTUS

Palauttaaksesi pumpun tehdasasetukset pidä kaikkia kolmea näppäintä painettuna 5 sekunnin ajan. Näin pumppu siirtyy automaattisäätöön, poistaa edelliset nostokorkeus- ja tehoasetukset ja vapauttaa pumpun käyttöasetuksien lukituksen (jos lukittuna).

Tiedonsiirtomoduulin resetointi vaatii seuraavat vaiheet:

1. Katkaise pumpusta virta,
2. Aseta 10 -asentoinen kytkin numeroon 9^{20} (tai 8 kaksoispumpun vasemmalla pumpulle),
3. Kytke pumppu päälle ja uudelleen pois,
4. Aseta 10-asentoinen kytkin numeroon 1,
5. Kytke pumppu päälle.

Tiedonsiirtomoduulin tehdasasetukset on nyt palautettu.

[^9]
5.2 КӒҮTTÖ

Pumppu voi toimia 5 eri säätötavalla. Pumppu voidaan asettaa edullisimmalle säätötavalle riippuen järjestelmästä, jossa pumppua käytetään.

Pumpun säätötavat:

- Automaattitila (tehdasasetus),
- Suhteellinen paine,
- Vakiopaine,
- Vakionopeus,
- Yhdistetty tila (kaikki säätötavan ilmaisimet pois päältä) - käytettävissä vain NMT(D) MAX C -pumpuissa.

(A) Automaattitila

Automaattitilassa pumppu asettaa käyttöpaineen automaattisesti järjestelmän mukaisesti.
Tällöin pumppu etsii itse optimaalisen toimintapisteen.
Tämä on suositeltava asetus useimpiin järjestelmiin.
Parametreja ei voi asettaa; niitä voi vain selata.

(1) Suhteellinen paine

Pumppu pitää paineen suhteessa hetkelliseen virtaamaan. Paine on sama kuin asetettu paine (kuvassa Hset) maksimiteholla; 0 -virtaamalla se on sama kuin $\mathrm{HQ} \%$ (oletus $50 \%, \mathrm{HQ} \%$ voidaan asettaa pumpun verkkosivulla) asetuspaineesta. Tällä välillä paine muuttuu lineaarisesti suhteessa virtaamaan. Säätötavassa voidaan asettaa vain pumpun paine (kuvassa Hset). Muita asetuksia voi vain selata
 vierittämällä.

(1) Vakiopaine

Pumppu pitää asetetun paineen (kuvassa Hset) 0-virtaamasta maksimitehoon, jossa paine alkaa laskea.
Vakiopainesäädössä voidaan asettaa vain paine (kuvassa Hset), jonka pumppu ylläpitää. Muita asetuksia voi vain selata vierittämällä.

Vakionopeus

Pumppu toimii asetetulla nopeudella (kuvassa RPMset). Säätämättömässä tilassa voidaan asettaa vain pumpun kierrosluku. Muita asetuksia voi vain selata vierittämällä.

Yhdistetty tila

Useita rajoja voidaan säätää vain web-rajapinnan kautta. Mikään muista säätötavoista ei ole käytössä.

(J) Yötila

Kun pumppu on yötilassa, se vaihtaa automaattisesti valitun säätötavan ja yötilan välillä. Vaihto tapahtuu nesteen lämpötilan perusteella.
Yötilassa sen kuvake syttyy ja pumppu käy valitulla säätötavalla. Kun pumpun anturi mittaa nesteen lämpötilan laskun $15-20^{\circ} \mathrm{C}$ (2 tunnin sisällä), kuvake alkaa vilkkua ja pumppu vaihtaa yötilaan. Kun nesteen lämpötila nousee, vilkkuminen loppuu ja pumppu palaa aiemmin valittuun säätötapaan.

Yötilaa voidaan käyttää vain muiden säätötapojen täydennyksenä. Se ei voi toimia yksinään.

5.2.1 KAKSOISPUMPPUKÄYTTÖ

Kaksoispumpussa on kaksoispesä, johon on integroitu läppäventtiili, joka kääntyy automaattisesti nesteen virtaaman perusteella, sekä kaksi erillistä moottoria. Pumput kommunikoivat Ethernet-liitännän kautta (käytettävissä vain MAX C:ssä). Emme suosittele yötilan käyttöä tässä käyttötavassa.

Pumput voivat toimia usealla eri käyttötavalla, tiedonsiirtomoduuli hoitaa pumpunvaihdon:

- Vuorottelukäyttö [oletusasetus] - Toinen pumppu käy ja toinen on valmiustilassa. Pumput vaihtavat tehtävää 24 tunnin välein tai jos toinen pumppu vikaantuu.
- Varapumppukäyttö - Toinen pumppu käy jatkuvasti ja toinen on valmiustilassa. Jos toimiva pumppu vikaantuu, valmiustilassa oleva pumppu käynnistyy automaattisesti. Voit asettaa tämän käyttötavan pysäyttämällä pumpun, jonka haluat olevan valmiustilassa. Tämä tehdään pitämällä painettuna 5 sekunnin ajan.
- Rinnankäyttö - Molemmat pumput toimivat samanaikaisesti samoilla vakiopaineasetuksilla. Tätä käyttötapaa käytetään, kun virtaama on suurempi kuin mitä yksi pumppu pystyy tuottamaan. Kun ensimmäisen pumpun maksimivirtaama ylittyy, toinen kytkeytyy päälle ja täydentää ensimmäistä halutun virtaaman saavuttamiseksi.
Tämä käyttötapa aktivoidaan asettamalla molemmat pumput vakiopainesäädölle.

NMT(D) MAX -pumpuissa käyttäjä suorittaa pumpunvaihdon.

6 VIAT JA VIANETSINTÄ

Jos pumppu vikaantuu, vian aiheuttanut virhe ilmaantuu näyttöruudulle. Näytön vikailmoituksia luetaan seuraavasti:

Vikaryhmä (X)	Vian kuvaus	Mahdollinen syy ja korjaus
1	Pieni kuormitus	Pumpussa ei ole nestettä. Tarkasta, onko järjestelmässä nestettä.
2	Moottorin ylikuormitus	Liian suuri virta tai roottori on jumittunut. Jos ongelma jatkuu, tarkasta pyöriikö roottori esteettä.
3	Moottori liian kuuma	Moottorin sallittu lämpötila on ylittynyt ja se on pysähtynyt jäähtyäkseen. Moottori käynnistyy uudelleen heti jäähdyttyään.
4	Elektroniikkavika	Vika elektroniikassa. Pumppu voi tästä huolimatta käydä, mutta vaatii huoltoa.
5	Moottori/staattorivika	Moottorin käämeissä saattaa olla katkos. Pumppu on huollettava.

Huoltokoodi (Y) on tarkoitettu huoltohenkilöstölle.
Jos pumppu ei reagoi, irrota se virransyötöstä ja liitä uudelleen sähköverkkoon.

7 VIANMÄÄRITYS

7.1 VIKAKOODIT

Seuraavat koodit ilmaantuvat näyttöpaneeliin ja asianomaisiin Modbusin rekistereihin. Niiden avulla voit diagnosoida käyttöhäiriön aiheuttajan.

Vikakoodi	Kuvaus	Vian aiheuttaja
E1x	Kuormitusviat	
E10 (drY)	Matala moottorin kuormitus	Matala kuormitus. Pumppu käy kuivana.
E11	Korkea moottorin kuormitus	Moottori voi olla viallinen tai neste on paksua
E2x	Suojaus on aktivoitunut	Piiri on liian kuuma ja teho alennettiin alle $2 / 3$ E22 (hot)
Taajuusmuuttajan lämpötilaraja	Piiri on liian kuuma toimiakseen, pumppu on E23	Taajuusmuuttajan lämpösuoja

Hrvatski (HRT) Uputa za uporabu

SADRŽAJ
1 Opće informacije 95
1.1 Uporaba 95
1.2 Označevanje črpalk 95
1.3 Održavanje, rezervni dijelovi i razgradnja 96
2 Sigurnost 96
3 Tehničke specifikacije. 96
3.1 Standardi i zaštite 96
3.2 Protočni medij 97
3.3 Temperatura i vlaga 97
3.4 Električne specifikacije 97
3.5 Specifikacije komunikacije 98
4 Ugradnja crpke 100
4.1 Ugradnja u cjevovod 100
4.2 Električni spoj 101
4.3 Spoj komunikacije 101
5 Podešenja i rad 102
5.1 Nadzor i funkcije 102
5.2 Rad 107
6 Pregled mogućih grešaka i otklanjanje 110
7 Otkrivanje grešaka 110
7.1 Kodovi grešaka 110
Krivulje crpki nalaze se na str. 150
Pridržavamo pravo promjene bez posebne obavijesti!
Simboli korišteni u Uputama:

Sigurnosno upozorenje:

Nepoštivanje sigurnosnog upozorenja, može prouzročiti oštećenja ljudi i naprave.

Savjet:

Savjeti koji mogu olakšati rad sa crpkom .

1 OPĆE INFORMACIJE

1.1 UPORABA

Cirkulacijske crpke NMT (new motor technology) namijenjene su cirkulaciji medija u sistemima toplovodnog grijanja, klimatizacije i prozračivanja. Izrađene su kao jednostruki ili dvostruki crpni agregati s ugrađenom elektronikom za regulaciju snage crpke. Crpka kontinuirano mjeri tlak i protoki prilagođava okretaje odabranom tlaku. Na izbor su dvije izvedbe NMT(D) MAX i NMT(D) MAX C. Izvedba s C modulom ima mogućnost daljinskog upravljanja i nadzora, preko etherneta, modbusa, analognih ulaza i izlaza, te relejski nadzor. Crpke NMT(D) MAX imaju mogućnost NMTC modula koji crpki daje sve opcije komunikacije kao i NMT(D) MAX C. Crpke NMT(D) MAX C imaju detaljnije upute o komunikaciji opisane u u odvojenim uputama za NMTC modul, koje se nalaze na Web starnici: »http://imppumps.com/en/documentacion/« ili putem QR koda:

Osnovna namjena dvostrukog agregata je neometan rad pri ispadu jedne crpke. U zajedničkom hidrauličkom kućištu ugrađena je preklopna klapna i dvije crpke koje su odvojeno spojene na električnu mrežu.
1.2 OZNAČEVANJE ČRPALK

1.3 ODRŽAVANJE, REZERVNI DIJELOVI I RAZGRADNJA

Crpke u normalnim uvjetima rade više godina bez održavanja. Vrijeme osiguranja rezervnih dijelova je 3 godine od dana početka jamstva

Ovaj proizvod i njegove dijelove potrebno je odstraniti na okolini neškodljiv način. Koristite ovlaštena poduzeća za odlaganje otpada, ukoliko to nije moguće stupite u kontakt s najbližim IMP PUMPS servisom ili ovlaštenim serviserom

2 SIGURNOST

Prije ugradnje i upuštanja crpke pažljivo proučite ove upute, koje su namijenjene korisniku kao pomoć pri ugradnji, korištenju i održavanju, te primjenite sve sigurnosne naputke. Ugradnja i električni spoj crpke moraju biti izvedeni u skladu sa lokalnim propisima i standardima. Servisiranje, ugradnju i održavanje smije izvoditi samo stručno osposobljeno osoblje. Nepridržavanje sigurnosnih naputaka može izazvati oštećenje proizvoda i ozljede osoblja i izaziva nepriznavanje jamstva i gubitak prava koja proističu iz jamstva.

3 TEHNIČKE SPECIFIKACIJE

3.1 STANDARDII ZAŠTITE

Crpke su izrađene u skladu s slijedećim standardima i zaštitama:

Razred zaštite:

IP44
Izolacijski razred:
180 (H)
Motorna zaštita:
Ugrađena termička zaštita

Specifikacija ugradnje		
Tip crpke	Dozvoljeni tlaki	Ugradna dužina (između prirubnica)[mm]
NMT(D) MAX (C) 32-120	PN6 i 10	220
NMT(D) MAX (C) 40-40		220/250
NMT(D) MAX (C) 40-80		220/250
NMT(D) MAX (C) 40-120		220/250
NMT(D) MAX (C) 40-180		220/250
NMT(D) MAX (C) 50-40		280
NMT(D) MAX (C) 50-80		280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 65-40		340
NMT(D) MAX (C) 65-80		340
NMT(D) MAX (C) 65-120		340
NMT(D) MAX (C) 80-40	PN 6	360
NMT(D) MAX (C) 80-40	PN 10	360
NMT(D) MAX (C) 80-80	PN 6	360
NMT(D) MAX (C) 80-80	PN 10	360

3.2 PROTOČNI MEDIJ

U slučaju ugradnje crpki u zatvorene sisteme grijanja, voda mora odgovarati odgovarajućim standardima (kao npr VDI 2035). Kod uporabe mješavine vode i glikola karakteristike crpke se mogu promjeniti ovisno o koncentraciji mješavine. Crpke se ne smiju rabiti za eksplozivne; kemijski agresivne medije, kao ni za medije koji sadrže dugačka vlakna ili mineralna ulja.

3.3 TEMPERATURA I VLAGA

Dozvoljene temperature okoline i medija			
Temperatura okoline [${ }^{\circ} \mathrm{C}$]	Temperatura medija [${ }^{\circ} \mathrm{C}$]		Relativna vlažnost okoline
	min.	maks.	
do 25	-10	110	
30	-10	100	<95 \%
35	-10	90	\%
40	-10	80	

\triangle

- Korištenje izvan preporučenih uvjeta može skratiti životnu dob i poništiti jamstvo.

3.4 ELEKTRIČNE SPECIFIKACIJE

3.4.1 STRUJA, NAPON I SNAGA

	Električne vrijednosti				
Tip crpke					

3.5 SPECIFIKACIJE KOMUNIKACIJE

Funkcije komunikacije opisane su u poglavlju: Nadzor in funkcije. Sve funkcije su dostupne samo za izvedbu NMT (D)MAX C. Detaljnije specifikacije korištenih protokola su opisane u uputama komunikacije.

3.5.1 ANALOGNI ULAZI I IZLAZI

Dostupni samo u crpkama NMT (D) MAX C.
Priključci se mogu ponašati kao ulazi ili izlazi, ovisno o podešenju. U crpkama su dostupna tri priključka SET 1; SET 2; i SET 3.

	Električne vrijednosti	
Ulazni napon	$-1-32 \mathrm{VDC}$	kada se koristi kao ulaz
Izlazni napon	$0-12 \mathrm{VDC}$	kada se koristi kao izlaz; 5mA maksimalno opterećenje na pojedini izlaz.
Ulazna impedancija	$\sim 100 \mathrm{k} \Omega$	$0-5 \mathrm{~mA}$ dodatnog opterećenja za većinu konfiguracija.
Ulazna struja	$0-33 \mathrm{~mA}$	zajednička točka na COM ako je podešen na izlaz.
Galvanska izolacija		do mrežnog napona 4kV @ 1s, 275V trajno

3.5.2 RELEJSKI IZLAZ

Dostupno samo u crpkama NMT(D) MAX C.

	Električne vrijednosti
Maks. dozvoljena struja	3 A
Izlazni napon	$230 \mathrm{VAC}, 32 \mathrm{VDC}$

3.5.3 ETHERNET

Dostupno samo u crpkama NMT (D) MAX C.

	Električne vrijednosti	
Ethernet priključak	RJ-45, 10BASE-T, 10 Mbit /s povezava.	
Način spoja i	-	Web server (port 80)
usluge	-	Nadogradnja programske opreme preko WEB poslužitelja
Zadana IP adresa	-	Mogućnost MODBUS RTU preko TCP/IP
Ethernet vizualna dijagnostika	LED1	Polako trepčuća, kada je modul uključen; neprekidno svijetli kada je veza
	LED2	uspostavljena.

3.5.4 MODBUS

Na voljo samo v črpalkah NMT(D) MAX C.

Modbus specifikacija		
Protokol	Modbus RTU	
Modbus priključak	Opružna spojnica	2+1 pin; Vidjeti upute NMTC modula.
Modbus standard prijenosa	RS-485	
Modbus način spoja	Dva vodiča + zajednički vodič	A,B I COM (zajednički vodič); (vidjeti upute NMTC modula).
Komunikacijski odašiljač	Ugrađen; $1 / 8$ standardnog opterećenja	Priključak moguć preko "passive tap" ili "daisy chain".
Maksimalna dužina spoja	1200 m	(vidjeti upute NMTC modula).
Adresa klijenta	1-247	Zadano je 245; podesiv preko ModBusa; Vidjeti upute NMTC modula.
Završetak priključivanja	Nije prisutno	Dovršetak priključivanja nije ugrađen u NMTC modul. Za kraće/sporije veze može se dovršetak propustiti. Završetak u drugim slučajevima mora biti na oba kraja veza.
Podržane brzine veza	$\begin{aligned} & 1200,2400,4800,9600, \\ & 19200,38400 \text { baud } \end{aligned}$	Podesivo preko Modbus registra [zadano =19200].
Start bit	1	Nepodesivo
Bitovi podataka	8	Nepodesivo
Stop bit	1 ili 2	1 stop bit je minimalan; 2 kod onemogućenih pariteta. [zadano=1].
Paritetni bit	Parni/neparni/bez	[zadano=parni].
Modbus vizualna dijagnostika	LED2	Treperi žuto kada otkrije podatke veza. Može treperiti u kombinaciji s/ili Ethernet ACT funkcijom.
Maksimalni broj Modbus uređaja	247	Ograničeno brojem Modbus adresa do 247; 1/8 opterećenja; omogućuje 256 uređaja.
Maksimalna veličina podatkovnoga Modbus paketa	256 bajta	Uključivo s adresom(1) I CRC (2) bajta.
Izolacija	Zajednička masa (COM) sa SET1; SET2 I SET3.	Zajednička masa (COM) sa SET1; SET2 I SET3; ModBus dijeli zajedničku masu s ostalim signalima.

4 UGRADNJA CRPKE

4.1 UGRADNJA U CJEVOVOD

Crpka je u transportu zaštićena dvostrukom kutijom. Crpku je moguće izvaditi iz kutije s ručkom u unutrašnjosti ili tako da crpku primite za rashladna rebra na stražnjoj strani električnog ormarića

Crpka je namijenjena za ugradnju na priključne prirubnice, pri čemu koristite odgovarajuće vijke. Priključci kombinirane prirubnice su izvedeni tako da je crpku moguće spojiti na cjevovod PN 6 ili PN 10 nazivnog tlaka. Zbog kombiniranih prirubnica potrebno je pri ugradnji odabrati odgovarajuće podloške na strani crpke

Za rad crpke s minimalnim vibracijama i šumovima, crpku ugradite tako da je os crpke 1-1 vodoravna u ravnom dijelu cjevovoda dužine najmanje 5-10D ($\mathrm{D}=$ nazivni otvor cijevi crpke) do koljena (slika 1).

Željeni položaj elektronike postižemo zakretanjem hidrauličkog kućišta glede na motor crpke (dozvoljeni položaji na slikama 2 i 3). Crpka je s 4 vijka pričvršćena na hidrauličko kućište. Odvijanjem vijaka moguće je promijeniti položaj glave crpke prema hidrauličkom kućištu.. Pri ponovnom pričvršćenju elektromotornog dijela crpke na hidrauličko kućište, potrebno je paziti na ispravan položaj brtve (slika 4)

Okolina crpke treba biti suha i osvjetljena po potrebi. Brtvljenje crpke sprječava ulaz vode i prašine iz okoline, o čemu govori IP razred zaštite. Pobrinite se da je poklopac pričvršćen i uvodnice zabrtvljene. Crpka će postići najdužu životnu dob pri sobnoj temperaturi i umjerenoj temperaturi medija. Dugotrajni rad u graničnim uvjetima može ubrzati trošenje crpke. Starenje ubrzavaju prije svega visoka temperatura i visoka radna snaga.

- Pogrešan priključak ili preopterećenjemože izazvati zaustavljanje ili trajno oštećenje crpke.
- Crpke su teške. Ako je potrebno, osigurajte si pomoć,
- Crpke se ne smiju ugraditi u sigurnosne cjevovode,
- Crpka ne smije služiti kao držač pri varenju cijevnog sistema, jer su moguća oštećenja
- Ukoliko brtva između elektromotornog dijela crpke i hidrauličkog kućišta nije ispravno postavljena, crpka neće biti zabrtvljena i postoji opasnost kvara na crpki,
- Glava crpke i otvori između hidrauličkog kućišta i motornog dijela ne smiju biti toplinski izoliranii, jer to ometa hlađenje elektromotora i odvođenje kondenzirane vode (slika 1),
- Vrući medij predstavlja opasnost od opeklina. Motor crpke može dostići za čovjeka opasnu temperaturu.

4.2 ELEKTRIČNI SPOJ

Električni spoj se izvodi s priloženim konektorom, za koji su priložene upute Crpka ima ugrađen strujni osigurač; temperaturnu zaštitu i osnovnu zaštitu od prenapona. Nije potrebna dodatna termička zaštitna sklopka. Priključni vodiči moraju odgovarati trajnom nazivnom opterećenju crpke i moraju biti odgovarajuće osigurani. obavezna je uporaba vodiča uzemljenja, kojeg treba prvog spajati. Uzemljenje samo štiti crpku. Cjevovodi trebaju biti zasebno uzemljeni.

- Priključak crpke smije izvesti samo osposobljena i kvalificirana osoba,
- Priključni kabel ne smije biti u dodiru s kućištem aparata zbog previsokih temperatura na kućištu,
- aparat nije namijenjen uporabi osobama (također i djeci) sa smanjenim fizičkim, osjetnim ili mentalnim sposobnostima, te osobama s pomanjkanjem iskušenja ili znanja osim ako su pod nadzorom ili podučeni glede uporabe od strane osobe odgovorne za njihovu sigurnost.
- djeca moraju biti pod nadzorom kako bi se spriječilo njihovo igranje napravom

4.3 SPOJ KOMUNIKACIJE

Dostupno samo kod crpki NMT(D) MAX C

4.3.1 ANALOGNI ULAZI I ZLAZI

Detaljniji opis je dostupan u uputama komunikacijskog modula

4.3.2 RELEJNI IZLAZ

Detaljniji opis je dostupan u uputama komunikacijskog modula

4.3.3 ETHERNET

Detaljniji opis je dostupan u uputama komunikacijskog modula

4.3.4 MODBUS

Detaljniji opis je dostupan u uputama komunikacijskog modula

5 PODEŠENJAIRAD

5.1 NADZOR I FUNKCIJE

Crpkom je moguće upravljati preko ekrana; a NMT (D) MAX C još i putem 10 stupanjske sklopke; analognih ulaza; ModBus ili ETHERNET priključka

- Ekran nam nudi podešenja i pregled načina rada crpke, vrijednosti statusa crpke (uključeno/isključeno)
- 10 stupanjska sklopka daje mogućnost promjene postavke relejnog izlaza i postavke odziva analognih ulaza/izlaza, te ponovne postavke komunikacijskog dijela crpke
- Analogni ulazi omogućuju osnovni nadzor nad crpkom (start, stop, maksimalna krivulja, minimalna krivulja, 0-10V; 4-20 mA)
- Analogni izlazi omogućuju nadzor nad crpkom (greške, okretaji, mod rada, protok, visina dobave)
- Relejni izlaz signalizira status crpke
- ETHERNET veza omogućava nadzor nad svim parametrima i podešenjima (vrijednosti; analogni ulaz i izlazi; pregled grešaka...)
- ModBus veza omogućava nadzor nad svim parametrima i podešenjima (vrijednosti; analogni ulaz i izlazi; pregled grešaka...)

Više signala može uticati na rad crpke. Kao rezultat toga različita prilagodba pumpe ima različite prioritete. Funkcije su prikazane u donjoj tablici. Ukoliko su aktivne dvije funkcije prednost ima ona sa višim prioritetom.

Prioritet	Kontrola preko zaslona i Ethernet postavke	Vanjski signal ${ }^{21}$	Modbus kontrola
1	Stop (Isklop)		
2	Aktivni noćni režim ${ }^{22}$		
3	Maksimalni okretaji (Hi)		
4		Minimalna krivulja	
5		Stop (RUN nije aktivan)	Stop
6			Referentna točka
7			
8			
9	Referentna točka		

Primjeri:

- Stop na zaslonu crpke će zaustaviti crpku bez obzira na vanjske signale I referentne točke
- Ako je vanjski start neaktivan, crpka se preko Modbusa ne može pokrenuti, ali se može postaviti na maksimalne okretaje na zaslonu crpke.

[^10]
5.1.1 ZASLON

Zaslonom je moguće podešavati i pregledavati različite načine rada; parametre; crpku isključimo/uključimo, te pregledavamo greške. Za načine rada pogledajte u poglavlju RAD.

5.1.1.1 FUNKCIJE TIPAKA

$\Theta_{\text {Tipka }}$
Kratki pritisak:

- Prelazak između parametara na dolje, ukoliko se ne mijenja vrijednost parametra,
- Prelazak između režima na dolje,ako imamo uključen odabir režima,
- Promjena vrijednosti na dolje, ako podešavamo vrijednosti parametara.

Dugi pritisak:

- 3 sekunde zajedno s dugim pritiskom \oplus uključuje se noćni režim,
- 3 sekunde zajedno s dugim pritiskom \oplus, zaključavamo podešene parametre crpke,
- 5 sekundi ugasimo crpku,
- 5 sekundi zajedno s dugim pritiskom tipaka $\odot i \oplus$ crpku vraćamo na tvorničke postavke.

$\Theta_{\text {Tipka }}$

Kratki pritisak:

- Potvrđuje trenutno podešenu vrijednost režima ili parametra.

Dugi pritisak:

- 3 sekunde omogućava prelazak između režima,
- 3 sekunde zajedno s dugim pritiskom Θ, zaključavamo podešene parametre crpke,
- 5 sekundi u kombinaciji s dugim pritiskom $\oplus \mathrm{i} \Theta$ tipke vraćamo crpku na tvorničke postavke.

$\oplus_{\text {tipka }}$

Kratki pritisak:

- Prelazak između parametara na gore, ukoliko se ne mijenja vrijednost parametra
- prelazak između režima na gore,ako imamo uključen odabir režima,
- Promjena vrijednosti na gore, ako podešavamo vrijednosti parametara.

Dugi pritisak:

- 3 sekunde zajedno s dugim pritiskom Θ uključuje se noćni režim,
- 5 sekundi u kombinaciji s dugim pritiskom tipaka $\Theta_{i} \odot$ vraćamo crpku na tvorničke postavke.

5.1.1.2 UKLJUČENJE I ISKLJUČENJE

Kada se crpka prvi puta uključuje na mrežu, ona počinje raditi s tvorničkim postavkama automatskog režima rada. Pri daljnjim uklapanjima crpka će raditi sa posljednjim podešenim vrijednostima, koje su bile podešene prije njezinog isklapanja
 Za ponovno uključenje kratkotrajno pritisnemo $\Theta_{\text {tipku. }}$

5.1.1.3 PODEŠENJE NAČINA RADA I PARAMETARA CRPKE

Za prelazak između režima držimo tipku $\odot 3 \mathrm{~s}$, nakon toga sa \oplus ili Θ tipkom odabiremo režim u kojem želimo rad crpke te ga potvrdimo \odot tipkom.
Nakon potvrde režima automatski će se prikazati odabir parametara, koje podešavamo pri odabranom režimu
 Unutar režima je moguće pregledavati vrijednosti parametara (vidjeti pojedini režim) s $\oplus i \ominus$ tipkom. Parametar koji želimo promijeniti odaberemo \oplus tipkom te mu podesimo vrijednost s \oplus ili Θ tipkom. Podešenu vrijednost potvrđujemo @tipkom.

5.1.1.4 ZAKLJUČAVANJE UPRAVLJANJA CRPKOM

Za zaključavanje i otključavanje upravljanja crpkom držimo tipke $\Theta_{i} \oplus 3$ sekunde. Kada je upravljanje zaključano, korisnik ne može podešavati parametre i način rada crpke . Kada je crpka zaključana moguće je uklapati i isklapati crpku i pregled parametara crpke, te postavljanje na tvorničke postavke koje otključavaju upravljanje crpkom.

5.1.2 10 STUPANJSKA SKLOPKA

Dostupno samo u crpkama NMT (D) MAX C
Na crpki je rotacijska sklopka za odabir načina rada modula.. Moguće je postavljati položaje pomoću plosnatog izvijača, tako da strjelicu usmjerimo u željeni položaj

Vrijednost sklopke se pročita nakon uključenja crpke. Detaljnije u uputama za C modul.

Odabrana vrijednost	Funkcija	Opis
0	Slobodna konfiguracija	Funkcije terminala podešavamo preko WEB sučelja.
1	Način 1	```SET1 = RUN ulaz SET2 = MAX ulaz SET3 = FB (10,5V) izlaz, koristi se za napajanje RUN i MAX ulaza. Vanjski naponi se mogu također koristiti RS-485 = Modbus komunikacija.```
2	Način 2	```SET1 = RUN ulaz SET2 = SPEED ulaz SET3 = FB (10,5V) izlaz; koristi se I za napajanje RUN I MAX ulaza. Vanjski 5-24V izvor se također može koristiti RS-485 = Modbus komunikacija.```
$3 . .5$	Rezervirani	Rezervirano za buduće načine prema želji stranke.
6	Pokazuje postavku relejskog izlaza	LED1 I LED2 pokazuju postavku relejskog izlaza.
7	Promjena postavke relejskog izlaza	Promjeni postavku relejskog izlaza. Izlaz se promjeni kada se crpka isključi I priključi na električnu mrežu u slijedu 0->1 1->2 2->0 LED1 I LED2 pokazuju postavku relejskog izlaza.
8	Reset dupleksa na tvorničke postavke	Isto kao način 9 s izmjenom da je IP adresa modula postavljena na 192.168.0.246 IP adresa druge pumpe u dupleksu sada je 192.168.0.245
9	Tvornička postavka	Ovaj način resetira NMTC modul na zadane tvorničke postavke. Modul će se resetirati ako se crpka odspoji I ponovno spoji na električnu mrežu. Napomena: - Isključite sve veze na SET1; SET2 I SET3 ako koristite taj mod, kako bi spriječili oštećenje upravljačke jedinice. Na SET1; SET2 I SET3 će biti izlazni napon 10 V ; 7 V i \%V. RS-485 port is actively driven. Rele će preklapati stanja. Ovaj mod se koristi za namjenu testiranja krugova. - Isključite sve ostale veze na modul kako bi spriječili oštećenje upravljačke jedinice.

5.1.3 ANALOGNI ULAZI I IZLAZI

Dostupni samo kod crpki NMT (D) MAX C.
Na crpki su dostupna tri analogan ulaza i izlaza, koji mogu imati različite funkcije. Podešava ih se preko WEB sučelja ili ModBus sučelja.

Ulaz/Izlaz	Funkcija	Opis funkcije
SET1	Run[Zadano-Način 1]	Uklop/isklop crpke. Zadano: aktivirano povezivanjem s SET 3.
SET2	Max/Min[Zadano-	Postavi crpku na maksimalne postavke, kada je aktivan SET 1.
	Način 1]	Postavi crpku na minimalne postavke, kada je aktivan SET 1.
SET3	FB[Zadano-Način 1]	10V naponski izlaz putem kojeg aktiviramo SET 1 i SET 2.

5.1.1 RELEJSKI IZLAZ

Dostupno samo kod crpki NMT(D) MAX (C).

Postavka	Opis
Start	Obavještava kad crpka radi
Operacija	Obavještava kad je crpka u stanju pripravnosti
Greška[Zadnao]	Obavještava kada se dogodi greška na crpki.
Bez funkcije	Ne obavještava.
Stalno uključen	Rele stalno uključen.

5.1.2 ETHERNET

Dostupno samo u crpkama NMT(D) MAX C

Crpka ima ugrađen WEB server, preko kojeg možemo pristupiti crpki direktno ili preko Ethernet mreže.
Zadana adresa putem koje se dostupa crpki je »nmtpump/« ili » 192.168.0.245/
WEB server koristi HTML za podešavanje/prikazivanje:

- Način rada crpke,
- Parametri crpke(snaga,okretaji, tlačna visina, protok)
- Podešenje relejskog izlaza,
- Podešenje vanjske kontrole,
- Trenutna i prijašnja greška, statistike crpke(korištenje snage, vrijeme rada i ostalo).

5.1.3 MODBUS

Dostupno samo u crpkama NMT(D) MAX C

Crpka ima ugrađen ModBus klient, preko kojeg komuniciramo s crpkom putem komunikacijskog standarda RS 485.
Preko ModBusa je moguće pregledavati i postavljati:

- Način rada crpke
- Parametre crpke (snaga, okretaji, visina dobave, protok)
- Podešenje relejskog izlaza
- Podešenje vanjske kontrole
- Trenutna i prijašnja grešak, statistike crpke (korištenje snage, vrijeme rada i ostalo).

5.1.5 POSTAVLJANJE CRPKE NA TVORNIČKE POSTAVKE

Za resetiranje crpke na tvorničke postavke potrebno je istovremeno pritisnuti sve tri tipke u vremenu 5 sekundi. Crpka se postavi u automatski mod rada.

Ranije postavljene vrijednosti će biti izbrisane.

Za povratak na tvorničke postavke komunikacijskog dijela potrebno je:

1) Crpku odvojiti od napajanja
2) 10 stupanjsku sklopku postaviti na broj 9^{24} (8 ako želinmo resetirati lijevu crpku dupleksa)
3) Crpku upaliti i ponovo ugasiti
4) 10 stupanjsku sklopku postaviti na broj 1
5) Crpku upaliti

Komunikacijski dio se postavi na tvorničke postavke.

5.2 RAD

Crpka može raditi u 5 različitih načina rada. Podesimo ju u najprikladniji mod rada u ovisnosti od sistema u kojem radi.
Načini rada crpke:

- Automatski način (tvornička postavka)
- Proporcionalni tlak
- Konstantni tlak
- Konstantni okretaji
- Kombiniran način (dostupni samo u NMT(D) MAX C crpkama).

[^11]
(A)
 Automatski način

U automatskom režimu crpka automatski podešava parametre rada glede na stanje hidrauličkog sistema. Crpka sama pronalazi optimalnu točku rada Parametre nije moguće mijenjati, već samo pregledavati Ovaj režim rada preporuča se za uporabu u većini sistema.
Parametre nije moguće mijenjati, već samo pregledavati.

(1) Proporcionalni tlak

Crpka drži tlak koji ovisi o trenutnom protoku. Tlak je jednak podešenom tlaku (Hset na crtežu) pri maksimalnoj snazi; pri protoku 0 tlak je jednak HQ\% (zadani HQ\% je 50\%) podešenog tlaka. U međuvremenu tlak varira linearno ovisno o protoku.
U reguliranom modu rada crpki podešavamo tlak (Hset na crtežu).
 Ostale parametre pregledavamo.

(E)

Konstantni tlak

Crpka konstantnoodržava podešeni tlak (Hset na crtežu) od protoka nula do maksimalne snage, nakon čega se tlak počinje snižavati. U ovom načinu rada crpki podešavamo tlak (Hset na crtežu), kojeg crpka održava. Ostale parametre pregledavamo.

Konstantni obrati-brzina

Crpka radi sa trenutno podešenim okretajima (RPMset na crtežu)
Kod konstantnih okretaja crpki je moguće samo podešavati okretaje na kojima radi, ostale parametre samo pregledavamo.

Kombiniran način

Moguće jeistovremeno podesiti više ograničenja samo preko WEB sučelja. Moguće je
 podešenje ograničenja okrataja, visine dobave i kut QH krivulje.
U tom načinu rada ne svijetli nijedan indikator načina rada.

(J) Nočni režim

Crpka u noćnom režimu automatski preklapa između trenutno odabrane radne krivulje I noćne krivulje. Preklapanje ovisi o temperature medija u sistemu. Kada je noćni režim u pripravnost njegova ikona svijetli I crpka radi u radnoj krivulji režima. Kada crpka prepozna pad temperature za $15-20^{\circ} \mathrm{C}$ (približno za 2 sata), ikona počne treperiti I crpka preklapa na noćnu krivulju. Kada se temperatura medija ponovno povisi , ikona prestaje treperiti I crpka se vraća na radnu krivulju.

Noćni režim nije samostalan režim, već je uvijek u kombinaciji s jednim od nabrojenih režima u kojem su podešeni parametri.

5.2.1 RAD DVOSTRUKIH CRPKI

Crpke imaju dvostruko hidrauličko kućište sa ugrađenom nepovratnom klapnom, koja se samostalno postavlja glede na tok fluida; te dva odvojena elektromotora. Crpke imaju međusobnu komunikaciju, preko ETHERNET veze (dostupno samo kod NMT(D) MAX C pumpi). U toj uporabi ne preporučamo korištenje noćnog režima rada.

Crpke rade na više načina, za međusobna preklapanja brine komunikacijski dio:

- naizmjenični rad (tvornička postavka); jedan crpka radi dok druga miruje. Crpke se mijenjaju u radu svakih 24 sata ili ako dođe do kvara jedne crpke
- rezervno djelovanje: jedna crpka stalno radi, druga stalno miruje. Pojavom greške na radnoj crpki automatski se uklapa druga crpka. Ovaj mod rada se dobije tako da odabranu rezervnu crpku isključimo pritiskom na minus tipku u vremenu 5 sek (OFF)
- paralelni rad: obje crpke rade istovremeno s istim postavkama konstannog tlaka. takav rad se koristi u slučajevima gdje treba veći protok koje jednostruka crpka ne može postići. kada prva crpka dođe do svoje granice uklopi se druga crpka i osigura potrebnu snagu za traženi protok.
Ovaj način rada se dobije tako da se na obje crpke postavi jednaka vrijednost konstanog tlaka.

Kod crpki NMT(D) MAX za preklapanje se mora pobrinuti korisnik.

6 PREGLED MOGUĆIH GREŠAKA I OTKLANJANJE

Ukoliko na crpki dođe do kvara na njenom zaslonu će se ispisati greška koja je uzrok kvaru.

Greške se na zaslonu prikazuju na slijedeći način:

Skupina greške(\mathbf{X})	Opis greške	Mogući uzrok i otklanjanje
1	Malo opterećenje - rad na suho	U crpki nema medija. Provjerite prisutnost medija u sistemu.
2	Preopterećenje motora	Preveliko strujno opterećenje ili blokiran rotor. Ako se greška ponavlja provjerite da li se rotor slobodno okreće.
3	Pregrijan motor	Motor crpke je dosegao previsoku temperaturu i preventivno se zaustavio Nakon hlađenja ponovo će se samostalno pokrenuti.
4	Greška elektronike	Prepoznata je greška elektronike. Crpka može još raditi, ali je potreban servis.
5	Kvar motora/statora	Ako na crpki dođe do kvara na zaslonu će se pojaviti broj greške koja je prouzročila kvar.

Servisni kod(Y) namijenjen je serviserima i održavanju.
Ako se crpka ne odaziva, potrebno ju je isključiti iz mreže i ponovo uključiti.

7 OTKRIVANJE GREŠAKA

7.1 KODOVI GREŠAKA

Kod greške se pojavljuje na zaslonu crpke i u pripadajućem Modbus registru. Ovim kodom je moguće dijagnosticirati kvar.

Kod greške	Opis	Mogući uzrok
E1x	Greške opterećanja	
E10 (drY)	Nisko opterećenje	Prepoznato nisko opterećenje; Crpka nije u mediju
E11	Visoko opterećenje	Kvar motora ili previše viskozan medij
E2x	Aktivne zaštite	
E22 (hot)	Previsoka temperatura pretvarača	Elektronika prezagrijana I snaga je bila smanjena na 2/3 pune snage
E23	Zaštita od previsoke temperature frekventnog pretvarača	Elektronika prevruća za rad I zaustavila je crpku
E24	Prevelika struja pretvarača	Izbacila strujna zaštita elektronike
E25	Prenapon	Ulazni napon je previsok
E26	Podnapon	Ulazni napon je premali za rad
E27	PFC - prevelika struja	Prevelika struja na PFC-ju
E3x	Greške crpke	
E31	Reagirala programska zaštita motora	Srednja vrijednost struje prevelika. Opterećenje crpke je iznad očekivanog
E4x	Greške elektronike	
E40	Greška na pretvaraču	Elektronika nije prestala s automatskim testom
E42 (LEd)	LED greška	Jedna LED na zaslonu je u kvaru (kratki spoj/nema kontakta)
E43 (con)	Greška NMTC modula	Zaslon ne prepoznaje pravilnu komunikaciju s energetskom elektronikom iako je napon prisutan
E44	DC krug struja pomaka	Napon na DC linku (R34) je izvan očekivanog područja
E45	Temperatura motora izvan očekivanog područja	Pri MFG testu je 10 ; 1% otpor za $10-30^{\circ} \mathrm{C}$, Očekivane vrijednosti u radu su $55-150^{\circ} \mathrm{C}$
E46	Temperatura kruga izvan očekivanog područja	Pri MFG testu je $0 . . .50^{\circ} \mathrm{C}$ Očekivane vrijednosti u radu su $5-150^{\circ} \mathrm{C}$
E47	Naponska referenca izvan očekivanog područja	Mjera s internom referencom se ne poklapa
E48	15V izvan očekivanog područja	15V napajanje nije 15V
E49	Ispitno opterećenje ne odgovara	Nikakav ispitni teret nije prepoznat ili mjerenje struje ne radi pravilno (MFG test)
E5x	Greške motora	
E51	Parametri motora izvan očekivanog područja	Motor ne radi pravilno
E52	Uključena termična zaštita	Temperature u motoru su previsoke za rad
E53	Odabran pogrešan model	Pogrešan model crpke ili su parametri modela crpke izvan podrućja rada

Русский Руководство по установке и эксплуатации

СОДЕРЖАНИЕ

1 Общие сведения 113
1.1 Назначение оборудования 113
1.2 Маркировка насоса 114
1.3 Техническое обслуживание насоса, запасные части и вывод из эксплуатации 114
2 Техника безопасности 114
3 Технические характеристики. 115
3.1 Стандарты и классы защиты 115
3.2 Перекачиваемая жидкость 115
3.3 Температура и влажность окружающего воздуха 116
3.4 Требования к электросети 116
3.5 Встроенный контур запуска 116
4 Установка насоса 119
4.1 Установка на трубопроводе 119
4.2 Электрические подключения 120
4.3 Сетевые соединения 120
5 Настройка и эксплуатация 121
5.1 Управление и функции 121
5.2 Работа 128
6 Поиск и устранение неисправностей 130
7 Диагностика 130
7.1 Коды ошибок 130

Характеристики насоса приведены на стр. 150.
Могут быть внесены изменения!

Символы, используемые в данном руководстве:

Предупреждение:

Несоблюдение мер безопасности может привести к травмам персонала или поломке оборудования

Примечания:
Советы по упрощению работы с насосом

1 ОБЩИЕ СВЕДЕНИЯ

1.1 НАЗНАЧЕНИЕ ОБОРУДОВАНИЯ

Циркуляционные насосы NMT (новая технология двигателей) предназначены для перекачки жидких сред в системах водяного отопления, климатизации и вентиляции. Они поставляются как в одинарном, так и в сдвоенном исполнении. Оба типа имеют возможность регулировки скорости и управляются электронным устройством: непрерывно измеряются давление и подача, а также автоматически регулируется рабочая скорость в зависимости от установленного способа регулировки.
Представлены две версии насосов: насосы NMT(D) MAX и NMT(D) MAX C. Насос NMT(D) MAX C оснащен опцией дистанционного управления и мониторинга с помощью протоколов Ethernet, Modbus, аналоговых входов и выходов и релейного управления. Насосы NMT(D) MAX оснащены опцией по установке дополнительного модуля NMTC, предоставляющего средства связи, аналогичные тем, которыми располагает насос NMT(D) MAX C. Для насосов MAX C подготовлены инструкции с подробными пояснениями, которые включены в руководство по модулю NMTC. Перейдите по ссылке:
"http: // imp-pumps.com/en/documentation/ или используйте QR-код:

Основной целью применения сдвоенного насоса является обеспечение непрерывной работы в том случае, если один из насосов становится неисправен. Общий корпус гидравлической части оснащен переключающей заслонкой и двумя головками насоса, по отдельности подключенными к электросети.

1.2 МАРКИРОВКА НАСОСА

NMT	Семейство насосов
(D)	Сдвоенный насос
(C)	Связь
MAX	Название насоса
40	Номинальный диаметр трубы
120	Максимальный напор (0,1 м водяного столба)
F250	Фланцевое соединение и расстояние между фланцами

1.3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ НАСОСА, ЗАПАСНЫЕ ЧАСТИ И ВЫВОД ИЗ ЭКСПЛУАТАЦИИ

Насосы разработаны таким образом, что они не требуют технического обслуживания в течение нескольких лет. Запасные части предоставляются по меньшей мере в течение 7 лет после окончания срока действия гарантии.

Данный продукт и его компоненты подлежат утилизации экологически безопасным способом. Воспользуйтесь услугами центра по сбору отходов, если это невозможно, свяжитесь с сервисной службой компании IMP Pumps или уполномоченными специалистами по ремонту.

2 ТЕХНИКА БЕЗОПАСНОСТИ

Перед установкой и вводом в эксплуатацию данного насоса внимательно изучите данное руководство. Его целью является помочь пользователю в установке, использовании и техническом обслуживании устройства, а также повысить уровень безопасности. Установка насоса должна выполняться в соответствии с местными стандартами и директивами. Техническое обслуживание насоса должен проводить только квалифицированный персонал.

Несоблюдение данных инструкций может привести к травмам пользователя или поломке оборудования, а также утрате гарантии. Безопасная работа насоса гарантируется только в том случае, если его установка, эксплуатация и техническое обслуживание выполняются в соответствии с инструкциями, изложенными в данном руководстве.

3 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

3.1 СТАНДАРТЫ И КЛАССЫ ЗАЩИТЫ

Насосы изготовлены в соответствии со следующими стандартами и классами защиты:

Класс защиты:
IP44
Класс изоляции:
180 (H)
Защита двигателя:
Термореле (встроенное)

Технические требования по установке		
Тип насоса	Номинальное давление	Установочная длина [мм]
NMT(D) MAX (C) 32-120		220
NMT(D) MAX (C) 40-40		220/250
NMT(D) MAX (C) 40-80		220/250
NMT(D) MAX (C) 40-120		220/250
NMT(D) MAX (C) 40-180		220/250
NMT(D) MAX (C) 50-40	PN6 410	280
NMT(D) MAX (C) 50-80	PN6 и 10	280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 65-40		340
NMT(D) MAX (C) 65-80		340
NMT(D) MAX (C) 65-120		340
NMT(D) MAX (C) 80-40	PN 6	360
NMT(D) MAX (C) 80-40	PN 10	360
NMT(D) MAX (C) 80-80	PN 6	360
NMT(D) MAX (C) 80-80	PN 10	360

3.2 ПЕРЕКАЧИВАЕМАЯ ЖИДКОСТЬ

Насос предназначен для перекачки чистой воды или смеси воды и гликоля, пригодной для использования в централизованных системах отопления. Качество воды должно соответствовать требованиям, предусмотренным стандартом VDI 2035. Жидкость не должна содержать агрессивных или взрывоопасных примесей, смесей минеральных масел и/или твердых или волокнистых частиц. Насос нельзя использовать для перекачки горючих и взрывоопасных веществ. Кроме того, его нельзя использовать во взрывоопасной атмосфере.

3.3 ТЕМПЕРАТУРА И ВЛАЖНОСТЬ ОКРУЖАЮЩЕГО ВОЗДУХА

Допустимая температура окружающей и перекачиваемой жидкости:			
Температура	Температура жидкости [${ }^{\circ} \mathrm{C}$]		
окружающей среды [${ }^{\circ} \mathrm{C}$]	мин.	макс.	окружающей среды
Up to 25	-10	110	
30	-10	100	<95 \%
35	-10	90	<95\%
40	-10	80	

\triangle

- Превышение рекомендуемых порогов может уменьшить срок службы насоса и привести к утрате гарантии .

3.4 ТРЕБОВАНИЯ К ЭЛЕКТРОСЕТИ

3.4.1 НОМИНАЛЬНЫЕ ТОК, НАПРЯЖЕНИЕ И МОЩНОСТЬ

Электрические характеристики					
Hacoc	Номинальное напряжение	Номинальна я мощность [Bт]	Номинальны й ток [A]	Номинальн ый ток (I $I_{\text {max }}$) [A]	Запуск
NMT(D) MAX (C) 32-120	230 В перем. тока $\pm 15 \%, 47-63$ Гц Насосы могут работать при пониженном напряжении и ограниченной мощности ($\mathrm{P}=\mathrm{I}_{\max } * \mathrm{U}$)	370	1.8	4.3	Встроенны й контур запуска
NMT(D) MAX (C) 40-40		110	1	4.3	
NMT(D) MAX (C) 40-80		270	1.3	4.3	
NMT(D) MAX (C) 40-120		480	2.3	4.3	
NMT(D) MAX (C) 40-180		680	3.4	4.3	
NMT(D) MAX (C) 50-40		160	1.3	4.3	
NMT(D) MAX (C) 50-80		370	1.7	4.3	
NMT(D) MAX (C) 50-120		560	2.5	4.3	
NMT(D) MAX (C) 50-120		830	3.6	4.3	
NMT(D) MAX (C) 65-40		230	1.1	4.3	
NMT(D) MAX (C) 65-80		560	2.6	4.3	
NMT(D) MAX (C) 65-120		810	3.5	4.3	
NMT(D) MAX (C) 80-40		390	1.8	4.3	
NMT(D) MAX (C) 80-40		390	1.8	4.3	
NMT(D) MAX (C) 80-80		800	3.5	4.3	
NMT(D) MAX (C) 80-80		800	3.5	4.3	

3.5 ВСТРОЕННЫЙ КОНТУР ЗАПУСКА

Для получения информации о требованиях к передаче данных смотрите главу: 5.1 Управление и функции. Некоторые функции доступны только для модели NMT(D) MAX C. Подробные сведения об используемых протоколах приведены в руководстве по связи.

3.5.1 АНАЛОГОВЫЕ ВХОДЫ И ВЫХОДЫ

Доступно только для модели NMT(D) MAX C.
Соединения могут быть использованы в качестве входов или выходов в зависимости от настроек. Насос оснащен 3 разъемами: SET1, SET2 и SET3.

	Электрические характеристики	
Входное напряжение	$-1 \ldots 32$ В пост. тока	При использовании в качестве входных данных.
Выходное напряжение	$0-12$ В пост. тока	При использовании в качестве выходных данных. Макс. нагрузка на отдельный выход -5 мА.
Входное полное сопротивление	~ 100 кОм	Дополнительная нагрузка для большинства конфигураций - 0,5 мА.
Входной втекающий ток	$0-33$ мА	Сток тока на СОМ, если используется в качестве выхода.
Гальваническая развязка	Напряжение до 4 кВ до 1 с, постоянное напряжение 275 В.	

3.5.2 РЕЛЕЙНЫЙ ВЫХОД

Доступно только для насосов NMT(D) MAX C.

	Электрические характеристики
Номинальный ток	3 A
Максимальное напряжение	230 В перем. тока, 32 В пост. тока

3.5.3 ETHERNET

Доступно только для насосов NMT(D) MAX C.

Электрические характеристики		
Разъем	RJ-45, 10BASE-T, 10 Мбит/с.	
Услуги		Веб-сервер (порт 80) Обновление программного обеспечения через веб-интерфейс. Дополнительный Modbus RTU через TCP/IP
IP-адрес по умолчанию	192.168.0.245 (192.168.0.246 для правого насоса)	
Визуальная диагностика Ethernet	LED1 LED2	Медленно мерцает, если модуль включен. Загорается при установлении соединения.

3.5.4 MODBUS

Доступно только для насосов NMT(D) MAX C pumps.

Спецификации Modbus		
Протокол передачи данных	Modbus RTU (дистанционный терминал Modbus)	
Разъем Modbus	Безвинтовые зажимы	$2+1$ контактов. Смотрите руководство по модулю NMTC.
Тип соединения Modbus	RS-485	
Конфигурация подключения Modbus	Двухпроводное + общий	Проводники: А, В и СОМ (общий). Смотрите руководство по модулю NMTC.
Трансивер связи	Интегрированный, 1/8 стандартной нагрузки	Подключение через пассивный отвод или последовательное соединение.
Максимальная длина кабеля	1200 м	Смотрите руководство по модулю NMTC.
Адрес подчиненного устройства	1-247	Значение по умолчанию равно 245, устанавливается через Modbus. Смотрите руководство по модулю NMTC.
Оконечное устройство линии	Отсутствует	Оконечное устройство линии не интегрировано. Для низких скоростей/небольших расстояний оконечное устройство может не применяться. В противном случае, необходимо обеспечить внешние оконечные устройства на обоих концах линии.
Поддерживаемые скорости передачи данных	$\begin{aligned} & 1200,2400,4800,9600,19200 \text {, } \\ & 38400 \text { бодов } \end{aligned}$	Настраиваемые по регистру Modbus [По умолчанию = 19 200].
Стартовый бит	1	Фиксированный.
Биты данных	8	Фиксированный.
Стоповые биты	1 или 2	Минимум 1 стоповый бит, до 2 при выключенном паритете [По умолчанию = 1]
Бит паритета	Четный/нечетный/отсутствует	[По умолчанию = четный]
Визуальная диагностика Modbus	LED2	Загорается желтым при обнаружении приема данных. В сочетании (или) с функцией Ethernet ACT.
Максимальное количество устройств Modbus	247	Ограничено возможным количеством адресов Modbus до 247. При 1/8 номинальной нагрузки доступно 256 устройств.
Максимальный размер пакета Modbus	256 байтов	Включая адрес (1) и байты CRC (2).
Развязка	Общая линия заземления (COM) с SET1, SET2 и SET3.	Протокол Modbus разделяет общую линию заземления с другими сигналами.

4 УСТАНОBKA HACOCA

4.1 УСТАНОВКА НА ТРУБОПРОВОДЕ

При транспортировке насос защищен двойной упаковкой. Для его извлечения из коробки вы можете воспользоваться внутренними ручками или вытащить его, взявшись за ребра охлаждения.

Насосы предназначены для установки посредством соединительных фланцев (необходимо использовать все винты). Соединительные комбинированные фланцы позволяют подключать насос к трубопроводам с номинальным давлением PN6 или PN10. В связи со специальным исполнением фланца со стороны насоса необходимо устанавливать шайбы.

Для установки головки насоса в требуемое положение поверните ее (допустимые положения показаны на Рис. 2 и 3). Головка крепится к гидравлическому литому корпусу с помощью четырех винтов. Открутив винты, вы можете повернуть головку насоса (Рис. 4).

Насос должен находиться в сухих условиях с достаточным уровнем освещения и не соприкасаться напрямую с какими-либо предметами. Уплотнения насоса препятствуют попаданию внутрь пыли и других частиц в соответствии с предписаниями класса защиты IP. Убедитесь, что на клеммной коробке установлена крышка, а кабельные уплотнения затянуты и герметизированы.
Чтобы обеспечить максимально долгий срок службы, насос должен работать в условиях комнатной температуры при средней температуре рабочей среды. Продолжительная эксплуатация в условиях повышенной температуры может привести к усилению износа. Износ вызван прежде всего высокими температурами и высокими нагрузками при работе.

- Неправильно выполненное подключение или повышение нагрузки могут привести к останову или необратимой поломке насоса.
- Насосы могут иметь большой вес. При необходимости используйте соответствующие подъемные средства,
- Насосы нельзя устанавливать на предохранительных трубопроводах,
- Запрещается использовать насос в качестве опоры во время сварочных работ!
- При повторной сборке убедитесь, что уплотнения установлены надлежащим образом. При невыполнении данной меры вода может нанести повреждения внутренним частям насоса,
- Отверстия между гидравлической частью и корпусом двигателя не должны быть засорены или термоизолированы, поскольку это может препятствовать охлаждению двигателя или выводу конденсата
- Горячая среда может вызвать ожоги! Двигатель также может нагреваться до температур, способных вызвать ожоги

4.2 ЭЛЕКТРИЧЕСКИЕ ПОДКЛЮЧЕНИЯ

Насос оснащен встроенным плавким предохранителем, термозащитой и защитой от перенапряжения. Насос не требует установки дополнительного термовыключателя. Питающие кабели должны иметь соответствующее сечение в зависимости от номинальной нагрузки насоса и должны быть соответствующим образом защищены. Для обеспечения безопасности установка заземления обязательна. Заземление необходимо подключить в первую очередь. Заземление служит только для обеспечения безопасного использования насоса. Трубы должны быть подключены к отдельному заземлению.

- Подключение насоса должно выполняться только квалифицированным персоналом,
- Подключения должны выполняться таким образом, чтобы избежать любой возможности контакта кабелей с корпусом насоса ввиду его высокой температуры,
- Данное устройство может использоваться детьми в возрасте от 8 лет и старше, а также лицами с ограниченными физическими, сенсорными или умственными возможностями или не обладающими достаточным опытом и знаниями, под надзором или руководством относительно безопасного использования устройства, при условии что они осознают опасности, связанные с его работой,
- Дети не должны играть с устройством,
- Очистка и техническое обслуживание может выполняться детьми только под надзором.

4.3 СЕТЕВЫЕ СОЕДИНЕНИЯ

Доступно только для насосов NMT(D) MAX C..

4.3.1 АНАЛОГОВЫЕ ВХОДЫ/ВЫХОДЫ

Подробное описание приведено в руководстве по модулю связи.

4.3.2 РЕЛЕЙНЫЙ ВЫХОД

Подробное описание приведено в руководстве по модулю связи.

4.3.3 ETHERNET

Подробное описание приведено в руководстве по модулю связи.

4.3.4 MODBUS

Подробное описание приведено в руководстве по модулю связи.

5 НАСТРОЙКА И ЭКСПЛУАТАЦИЯ

5.1 УПРАВЛЕНИЕ И ФУНКЦИИ

Для управления насосом используется дисплейная панель, 10-позиционный переключатель, аналоговые входы, протоколы Modbus или Ethernet.

- Дисплейная панель служит для управления и отображения режимов, параметров и состояния (вкл./откл.) насоса,
- 10-позиционный переключатель позволяет менять релейный выход, аналоговые входы/выходы и выполнять сброс конфигурации связи насоса,
- Аналоговые входы служат для управления насосом (запуск, останов, макс. характеристики, мин. характеристики, 0-10 B, 4-20 мА...),
- Аналоговые выходы используются для получения данных по работе насоса (ошибки, скорость, режим, расход, высота),
- Релейный выход служит для индикации состояния насоса,
- Протокол Ethernet служит для управления всеми функциями и настройками насоса (переменные насоса, цифровые входы, обзор ошибок),
- Протокол Modbus дает обзор всех параметров и настроек (переменные насоса, цифровые входы, обзор ошибок).
На работу насоса влияют несколько сигналов. По этой причине настройкам назначены различные приоритеты, как показано в таблице ниже. Если две или более функций активны одновременно, преобладать будет функция с более высоким приоритетом.

Приоритет	Панель управления насосом и настройки Ethernet	Внешние сигналы ${ }^{25}$	Управление Modbus
1	Stop (OFF)/Останов (ОТКЛ.)		
2	Ночной режим активирован ${ }^{26}$		
3	Max. speed (Ні)/Макс. скорость вращения (Выс.)		
4		Minimal curve/Минимальная характеристика	
5		Stop (RUN not active)/Останов (ХОД не активен)	
6		Max. speed (Ні)/Макс. скорость вращения (Hi$)^{27}$	Stop/Останов
7			Reference point/Эталонная точка
8		Reference point/Эталонная точка	
9	Reference point/Эталонная точка		

[^12]
5.1.1 ДИСПЛЕЙНАЯ ПАНЕЛЬ

С помощью дисплейной панели вы можете управлять и получать обзор режимов, функции включения и отключения, параметров и ошибок насоса. Для получения информации о принципе работы режимов насоса смотрите главу 5.2. Работа.

1. Схема дисплея с параметрами насоса
2. Цифровой дисплей значений
3. Дисплей выбранного параметра (единица измерения)
4. Дисплей выбранного режима работы
5. Ночной режим
6. © Кнопка
7. ๑Кнопка
8. Ө Кнопка

5.1.1.1 ФУНКЦИИ КНОПОК

Кнопка
Краткое нажатие:

- Для просмотра отображаемых параметров вниз (когда режим изменения значений неактивен),
- Для просмотра режимов работы вниз (когда активен выбор режимов работы),
- Для уменьшения значения параметров (когда активен режим изменения значения).

Длительное нажатие:

- в течение 3 секунд одновременно с кнопкой \oplus для выбора ночного режима,
- в течение 3 секунд одновременно с кнопкой ® для блокировки текущей операции, выполняемой насосом,
- в течение 5 секунд для выключения насоса,
- в течение 5 секунд одновременно с кнопками \oplus и \oplus для возврата к заводским настройкам насоса.

Кнопка
Краткое нажатие:

- для подтверждения выбранных значений режима и параметра.

Длительное нажатие:

- в течение 3 секунд для активации выбора режима работы,
- в течение 3 секунд одновременно с кнопкой ө для блокировки текущей операции, выполняемой насосом,
- в течение 5 секунд, одновременно кнопки \ominus и \oplus для возврата к заводским настройкам насоса.

Кнопка
Краткое нажатие:

- для просмотра отображаемых параметров вверх (когда режим изменения значений параметров неактивен),
- для просмотра режимов работы вверх (когда активен выбор режимов работы),
- для увеличения значения параметра (когда активен режим изменения значений.

Длительное нажатие:

- в течение 3 секунд одновременно с кнопкой ө для выбора ночного режима,
- в течение 5 секунд одновременно с кнопками Θ и ө для возврата к заводским настройкам насоса.

5.1.1.2 ВКЛЮЧЕНИЕ И ВЫКЛЮЧЕНИЕ

При первом подключении к сети насос работает с заводскими настройками в автоматическом режиме.
При последующих включениях насос будет работать согласно последним настройкам, выбранным в момент предыдущего выключения

Для остановки насоса нажмите и удерживайте кнопку ө в течение 5 секунд, пока на дисплее не появится надпись OFF. Когда насос отключен, на цифровом дисплее отображается надпись OFF (ОТКЛЮЧЕНО).

Для включения насоса кратковременно нажмите кнопку Θ.

5.1.1.3 РЕЖИМЫ И ПАРАМЕТРЫ НАСОСА

Для перехода из одного режима в другой кнопка ๑ удерживается в течение 3 секунд, затем при помощи кнопок \oplus или \ominus выбирается нужный режим работы насоса. Выбор подтверждается кнопкой Θ. После подтверждения режима работы на дисплее начнет мигать устанавливаемый параметр, связанный с выбранным режимом (кроме автоматического режима). При необходимости параметр задается кнопками \oplus и ө с последующим подтверждением выбранной настройки при помощи кнопки ө либо нажатием на кнопку \odot.
Можно выполнять просмотр значений параметров в пределах выбранного режима при помощи кнопок \oplus и Θ. Параметр, который можно отрегулировать в данном режиме (см. описание конкретного режима), выбирается при помощи кнопки \odot а нужное значение задается кнопками \oplus и \ominus. Подтверждается выбранное значение кнопкой.

5.1.1.4 БЛОКИРОВКА НАСОСА

Для блокировки и разблокировки текущего режима работы и параметров насоса удерживайте кнопки \ominus и \odot в течение 3 секунд. Во время блокировки вы можете включать и выключать насос, просматривать параметры и выполнять сброс настроек до заводских значений, что приведет к разблокировке насоса.

5.1.2 10-ПОЗИЦИОННЫЙ ПЕРЕКЛЮЧАТЕЛЬ

Доступно только для насосов NMT(D) MAX C.
В клеммной коробке находится поворотный переключатель режима. Переключатель можно повернуть с помощью отвертки, аккуратно вставив ее в стрелочный указатель и поворачивая на необходимое значение.

Настройка с помощью переключателя используется только при включении насоса! Более подробная информация о различных режимах изложена в руководстве по связи.

Положение переключателя режима	Функция	Описание
0	Свободная конфигурация	Функции подключения настраиваются через интерфейс Ethernet.
1	Режим 1	```SET1 = Вход RUN SET2 = Вход MAX SET3 = Выход FB (10,5 B), используемый для обеспечения входов RUN и MAX. Также можно использовать внешний источник напряжения. RS-485 = Интерфейс Modbus.```
2	Режим 2	$\begin{aligned} & \text { SET1 }=\text { Вход RUN } \\ & \text { SET2 }=\text { Вход SPEED } \end{aligned}$ SET3 = Выход FB (10,5 B), используемый для обеспечения входов RUN и MAX. Также можно использовать внешний источник напряжения 524 B. RS-485 = Интерфейс Modbus
$3 . .5$	Резерв	Зарезервировано на будущее или для специальных требований заказчика.
6	Отобразить конфигурацию реле	Светодиоды LED1 и LED2 покажут конфигурацию реле.
7	Изменить конфигурацию реле	Конфигурация реле будет увеличена (0->1, 1->2, 2->0) при включении электропитания. Светодиоды LED1 и LED2 покажут текущую конфигурацию реле.
8	Дублирующий сброс до заводских настроек	Аналогичен режиму 9 за исключением того, что: IP-адрес модуля - 192.168.0.246 Дублирующий IP-адрес - 192.168.0.245
9	Сброс до заводских настроек	Данный режим служит для сброса настроек интерфейса связи до значений по умолчанию. Основная цель - восстановить настройки по умолчанию. ПРИМЕЧАНИЕ: - Отключите все соединения SET1, SET2 и SET3 при использовании данного режима во избежание возможной поломки контроллера. SET1, SET2, SET3 обеспечивают выход испытательных напряжений 10 В, 7 В и 5 В соответственно. Порт RS-485 будет активирован. Реле выполняет цикл переключения. Данные операции выполняются в целях тестирования. - Рекомендуется отсоединить все провода модуля во избежание возможной поломки внешних контроллеров.

5.1.3 АНАЛОГОВЫЕ ВХОДЫ/ВЫХОДЫ

Доступно только для насосов NMT (D) MAX C.
Насос оснащен тремя аналоговыми входами/выходами с различными функциями. Такие входы/выходы могут быть настроены через Ethernet на веб-странице «Settings/Настройки». Настройки отображаются на веб-странице «Overview/Обзор».

Вход/выход	Функция	Описание
SET1	Run [Default - Mode 1]/Ход [По умолчанию - Режим 1]	Включение/выключение насоса. По умолчанию активируется при подключении к SET3.
SET2	Max/Min [Default - Mode 1]/Макс./мин. [По умолчанию - Режим 1]	Установка максимальной мощности насоса при активном SET1 и минимальной мощности - при неактивном SET1.
SET3	FB [Default - Mode 1]/FB [По умолчанию - Режим 1]	Выходное напряжение 10 В используется для активации SET1 и SET2 путем их подключения к SET3.

5.1.4 РЕЛЕЙНЫЙ ВЫХОД

Релейный выход можно настроить через соединение Ethernet на странице «Settings/Настройки» и просмотреть на странице «Overview/Обзор».

Релейный выход может быть сконфигурирован для:

Конфигурация	Описание
Run/Ход	Означает, что насос находится в рабочем режиме.
Operate/Работа	Означает, что насос находится в режиме ожидания.
Error[Default]/Ошибка [по умолчанию]	Означает, что возникла ошибка.
No function/Простой	Индикация отсутствует.
Always on/Постоянно	Реле постоянно замкнуто.
вкл.	

5.1.5 ETHERNET

Доступно только для насосов NMT(D) MAX C.
Насос оснащен встроенным веб-сервером, который позволяет получить прямой доступ к насосу через имеющееся соединение Ethernet. Адрес по умолчанию для доступа к насосу «nmtpump /» или 192.168.0.245/

Веб-сервер использует HTML-страницы для установки/просмотра:

- Настройки режима регулирования,
- Параметры регулирования (мощность, скорость вращения, напор, расход),
- Настройки реле,
- Настройки внешних входов управления,
- Текущие и предыдущие ошибки,
- Статистические данные по насосу (потребление мощности, время работы и пр.).

5.1.6 MODBUS

Доступно только для модели NMT(D) MAX C.
Насос оснащен встроенным Modbus-клиентом, с помощью которого мы получаем доступ к данным по насосу, используя интерфейс RS 485.

Modbus позволяет выполнять настройку и просматривать:

- Настройки режима регулирования,
- Параметры регулирования (мощность, скорость вращения, напор, расход),
- Настройки реле,
- Настройки внешних входов управления,
- Текущие и предыдущие ошибки,
- Статистические данные по насосу (потребление мощности, время работы и пр.).

5.1.7 ВОЗВРАТ К ЗАВОДСКИМ НАСТРОЙКАМ НАСОСА

Для возврата к заводским настройкам одновременно нажмите и удерживайте все три кнопки в течение 5 секунд. После этого насос переходит в автоматический режим, удаляет предыдущие настройки высоты и мощности и выполняет разблокировку (при блокировке).

Для сброса настроек коммуникационного модуля необходимо выполнить следующие шаги:

1. Отключите насос от источника питания,
2. Переведите 10 -позиционный переключатель на номер 9^{28} (или 8 для левого насоса),
3. Снова включите и выключите насос,
4. Переведите 10 -позиционный переключатель на номер 1 ,
5. Включите насос.

Теперь настройки коммуникационного модуля должны быть восстановлены до заводских.

[^13]
5.2 РАБОТА

Насос может работать в 5 различных режимах. Поэтому можно выбрать наиболее подходящий режим в зависимости от системы, в которую устанавливается насос.
Режимы работы насоса:

- Автоматический режим (по умолчанию),
- Пропорциональное давление,
- Постоянное давление,
- Постоянная скорость,
- Комбинированный режим (все индикаторы режима отключены) - доступно только для модели NMT(D) MAX C.

(A)
 Автоматический режим

В автоматическом режиме насос определяет оптимальную рабочую точку и автоматически устанавливает наиболее подходящее рабочее давление в зависимости от состояния гидравлической системы, что оптимизирует эксплуатационные характеристики и расход электроэнергии.
Данный режим рекомендуется для работы в большинстве систем.
В данном режиме рабочие параметры нельзя изменить, их можно только просмотреть.

Пропорциональное давление

Насос поддерживает давление с учетом текущего расхода. Давление равно заданному давлению (Hset на чертеже) при максимальной мощности; при нулевом расходе оно равно HQ \% (по умолчанию 50 \%, значение HQ \% можно задать на странице Pump/Hacoc) от заданного давления. В интервале
 между этими значениями давление изменяется линейно в зависимости от расхода. В регулируемом режиме можно задавать только давление насоса (Hset на чертеже). Остальные параметры можно только просмотреть.

Постоянное давление

Насос поддерживает заданное давление (Hset на чертеже) в пределах от нулевого расхода до максимальной мощности, при которой давление начинает падать. При постоянном давлении возможно только задание давления (Hset на чертеже), которое будет поддерживаться насосом. Остальные параметры можно только просмотреть.

Постоянная скорость

Насос работает с заданной скоростью (RPMset на чертеже).
В нерегулируемом режиме возможно только задание скорости, при которой будет работать насос. Остальные параметры можно только просмотреть.

Комбинированный режим

Вы можете задать несколько ограничений через веб-интерфейс. Ни один другой режим не активирован.

Ночной режим

При работе в ночном режиме насос автоматически переключается между текущим и ночным режимом. Переключение зависит от температуры перекачиваемой жидкости. При работе в ночном режиме появляется соответствующий значок, и насос выполняет работу в выбранном

режиме. При обнаружении насосом падения температуры жидкости на $15-20^{\circ} \mathrm{C}$ (в пределах 2 часов) значок начинает мигать, после чего насос переходит в ночной режим. При повышении температуры жидкости значок перестает мигать, и насос возвращается к ранее выбранному режиму работы.

Ночной режим выступает только в качестве дополнительного к остальным режимам работы и не является независимым режимом.

5.2.1 РАБОТА СДВОЕННОГО НАСОСА

Сдвоенный насос оснащен двойной гидравлической частью с возвратным клапаном, который автоматически переключается в зависимости от подачи жидкости и работы двух отдельных двигателей. Насосы сообщаются между собой через соединение Ethernet (доступно только для модели MAX C). Не рекомендуется включать ночной режим для данного режима работы.

Насосы могут работать в нескольких режимах, переключение между насосами выполняется коммуникационным модулем:

- Чередующаяся работа [настройка по умолчанию] - один насос работает, второй находится в режиме ожидания. Насосы переключаются каждые 24 часа или в том случае, если в работе одного из насосов возникает сбой.
- Резервная работа - один насос работает постоянно, второй находится в режиме ожидания. При возникновении сбоя в работе насоса второй насос, находящийся в режиме ожидания, автоматически запускается. Данный режим можно задать, выключив насос, предусмотренный для режима ожидания. Для этого нажмите и удерживайте кнопку ө в течение 5 секунд.
- Параллельная работа - оба насоса работают одновременно с одинаковыми настройками постоянного давления. Данный режим используется при повышенном расходе (превышающем производительность одного насоса). Когда расход первого насоса достигает предельное значение, включается второй насос и дополняет первый для оптимизации подачи жидкости. Данный режим активируется в том случае, если для обоих насосов выбран режим постоянного давления.

На насосах NMT(D) MAX переключение выполняет пользователь.

6 ПОИСК И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

В случае отказа насоса ошибка, взывавшая отказ, появится на экране дисплея.
Идентификация ошибок, отображаемых на дисплее:

| $\begin{array}{c}\text { Группа } \\ \text { ошибок (X) }\end{array}$ | Описание сбоя | Возможные причины и способы их устранения |
| :---: | :---: | :--- | \(\left.\begin{array}{ccc}Отсутствие

нагрузки\end{array} \quad $$
\begin{array}{l}\text { Отсутствие жидкости в насосе. Убедитесь в наличии жидкости в } \\
\text { системе. }\end{array}
$$\right]\)

Служебный код (Y) предназначен только для технического персонала.

В случае неисправности насоса отключите его от электросети и подключите заново.

7 ДИАГНОСТИКА

7.1 КОДЫ ОШИБОК

Следующие коды будут отображаться на дисплейной панели и в соответствующих регистрах Modbus, чтобы помочь вам диагностировать причину сбоев в эксплуатации.

Код ошибки	Описание	Возможная причина
E1x	Ошибки нагрузки	
E10 (drY)	Низкая нагрузка двигателя	Обнаружена низкая нагрузка. Насос работает всухую.
E11	Высокая нагрузка двигателя	Двигатель может быть неисправен, или присутствует вязкая среда.
E2x	Защита активирована	
E22 (hot)	Предельная температура преобразователя	Температура рабочей цепи чрезмерно высока, и мощность была уменьшена до менее чем $2 / 3$ от номинальной мощности.
E23	Защита преобразователя от перегрева	Температура рабочей цепи чрезмерно высока, насос остановлен.
E24	Превышение тока преобразователя	Сработала защита по току перегрузки аппаратного обеспечения.
E25	Повышенное напряжение	Напряжение слишком высокое.
E26	Пониженное напряжение	Напряжение слишком низкое для нормальной работы.
E27	Перегрузка по току PFC	Невозможно контролировать питающий ток
E3x	Ошибки насоса	
E31	Программное обеспечение защиты двигателя активировано	Средний ток двигателя слишком высок, нагрузка насоса намного выше номинальной.
E4x	Специальные коды ошибок устройства	
E40	Общая ошибка преобразователя частоты	Электрическая цепь не прошла самотестирование.
E42 (LEd)	Светодиод неисправен	Один из светодиодов сегментного индикатора неисправен (разрыв цепи/короткое замыкание).
E43 (con)	Связь не установлена	На дисплейной панели не обнаружено правильного подключения к основной плате, но электропитание подается.
E44	Смещение тока соединения постоянного тока	Напряжение на шунте соединения постоянного тока (R34) находится за пределами ожидаемого диапазона.
E45	Температура двигателя находится за пределами допустимых значений	Для заводского испытания используется резистор 10 кОм допуском 1% для $10 . . .30^{\circ} \mathrm{C}$ При работе ожидаемые значения составляют $-55^{\circ} \mathrm{C} . . .150^{\circ} \mathrm{C}$.
E46	Температура цепи находится за пределами допустимых значений	При заводских испытаниях диапазон температуры составляет $0 . . .50^{\circ} \mathrm{C}$. При работе ожидаемые значения составляют $-55^{\circ} \mathrm{C} . . .150^{\circ} \mathrm{C}$.
E47	Опорное напряжение находится за пределами допустимых значений.	Сравнение внутренних значений показывает несоответствие.
E48	Напряжение 15 В находится за пределами допустимых значений	Напряжение 15 В не соответствует 15 В.
E49	Испытательная нагрузка не совпадает	Испытательная нагрузка не определяется, или устройство измерения тока работает неправильно (заводские испытания).
E5x	Коды ошибок двигателя	
E51	Параметры двигателя находятся за пределами допустимых значений	В работе двигателя обнаружены отклонения.
E52	Тепловая защита двигателя активна	Температура двигателя слишком высокая для работы
E53	Недопустимая модель выбрана	Модель насоса не производится или не существует

Français (FR) installation et mode d'emploi

TABLE DES MATIÈRES

1 Informations... 133
1.1 Utilisation .. 133
1.2 Étiquetage de la pompe.. 133
1.3 Pompe entretien, pieces de rechange et démantèlement.. 134

2 Sécurité .. 134
3 Specifications techniques... 134
3.1 Normes et protections.. 134
3.2 Milieu de la pompe.. 135
3.3 Temperatures et l'humidite ambiante... 135
3.4 Caracteristiques electriques ... 135
3.5 Spécifications de communication.. 136

4 Installation de la pompe ... 138
4.1 Installation dans les lignes de tuyauterie ... 138
4.2 Installation electrique.. 139
4.3 Installation de communication.. 139

5 Configuration et fonctionnement .. 140
5.1 Fonctions et commande .. 140
5.2 Fonctionnemement .. 146

6 Erreur et dépannage .. 148
7 Diagnostic.. 148
7.1 Codes d’erreurs .. 148

Les courbes de la pompe se trouvent à la page 150.

Sous réserve de modifications!

Symboles utilisés dans ce manuel:

Attention:

Mesures de sécurité qui, si elles sont ignorées pourraient causer des blessures ou de dommages aux machines

Remarque:

Conseils qui pourraient faciliter la manipulation de la pompe.

1 INFORMATIONS

1.1 UTILISATION

La NMT (nouvelle technologie de moteur) pompes de circulation est utilisées pour le transfert d'un milieu liquide à l'intérieur des systèmes de chauffage à eau chaude, climatisation et ventilation. Elles sont conçues sous forme d'agrégats de pompage à régime variable simple ou double, où la vitesse est régulée par un dispositif électronique. La pompe mesure en permanence la pression et le débit et ajuste la vitesse en fonction du mode réglé de la pompe. Il existe deux versions de pompes: pompes NMT (D) MAX et NMT (D) MAX C. NMT (D) MAX C a la possibilité de contrôle à distance et par la surveillance via Ethernet, Modbus, entrées et sorties analogiques, et aussi commande du relais. Pompes NMT (D) MAX ont l'option d'acquisition du module NMTC supplémentaire, ce qui permet des options de communication de la pompe de NMT (D) MAX C. Les pompes MAX C ont des instructions détaillées sur la communication expliqué dans les instructions séparées pour le module NMTC, qui sont situées sur le site Web: "http: // imp -pumps.com/en/documentation/." Ou à travers le code QR:

Le Le but principal de la pompe double est un fonctionnement ininterrompu si l'une des pompes échoue boîtier hydraulique commun est équipé d'un volet de basculement et de deux têtes de pompe, connectés séparément au réseau électrique.

1.2 ÉTIQUETAGE DE LA POMPE

1.3 POMPE ENTRETIEN, PIECES DE RECHANGE ET DÉMANTÈLEMENT

Les pompes sont conçues pour fonctionner sans entretien pendant plusieurs années. Les pièces de rechange seront disponibles pendant au moins 3 ans à compter de l'expiration de la période de garantie. Ce produit et ses composants doivent être éliminés d'une manière respectueuse de l'environnement. Utilisez les services de collecte des déchets, si cela est possible, contactez le plus proche IMP Pompes Service ou réparateurs agréés.

2 SÉCURITÉ

Ces instructions doivent être soigneusement étudiées avant d'installer ou de faire fonctionner la pompe. Elles sont destinées à vous aider à l'installation, l'utilisation et l'entretien et d'augmenter votre sécurité. L'installation doit être effectuée en ce qui concerne les normes et directives locales. Seul le personnel qualifié doit entretenir et réparer ces produits.Défaillance de la suite de ces instructions peut causer des dommages à l'utilisateur ou d'un produit et peut annuler la garantie. Les fonctions de sécurité ne sont garanties que si la pompe est installée, utilisée et entretenue comme décrit dans ce manuell.

3 SPECIFICATIONS TECHNIQUES

3.1 NORMES ET PROTECTIONS

Les pompes sont faites conforme aux normes et protections suivantes:
Classe de protection:
IP44
Classe d'isolation:
180 (H)
Protection du moteur:
Thermique - intégré

Spécification d'installation		
Type de pompe	Pression nominale	Longueur du raccord [mm]
NMT(D) MAX (C) 32-120		220
NMT(D) MAX (C) 40-40		220/250
NMT(D) MAX (C) 40-80		220/250
NMT(D) MAX (C) 40-120		220/250
NMT(D) MAX (C) 40-180		220/250
NMT(D) MAX (C) 50-40	PN6 ot 10	280
NMT(D) MAX (C) 50-80	PN6 et 10	280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 50-120		280
NMT(D) MAX (C) 65-40		340
NMT(D) MAX (C) 65-80		340
NMT(D) MAX (C) 65-120		340
NMT(D) MAX (C) 80-40	PN 6	360
NMT(D) MAX (C) 80-40	PN 10	360
NMT(D) MAX (C) 80-80	PN 6	360
NMT(D) MAX (C) 80-80	PN 10	360

3.2 MILIEU DE LA POMPE

Le milieu de la pompe peut être de l'eau pure ou un mélange d'eau et de glycol pur, qui est approprié pour un système de chauffage central. L'eau doit répondre aux normes de la qualité de l'eau VDI 2035. Le milieu doit être exempt d'additifs agressifs ou explosifs, libre à partir de mélanges d'huiles minérales et de particules solides ou fibreuses. La pompe ne doit pas être utilisée pour le pompage des médias explosifs et inflammables ou dans une atmosphère explosive.

3.3 TEMPERATURES ET L'HUMIDITE AMBIANTE

Température autorisé ambiante et du fluide:			
Température ambiante [$\left.{ }^{\circ} \mathrm{C}\right]$	Température du fluide [${ }^{\circ} \mathrm{C}$]		
	min.	maks.	
Jusqu'à 25	-10	110	
30	-10	100	
35	-10	90	<95\%
40	-10	80	

\triangle

- Opérations au dehors des conditions recommandées peuvent raccourcir la durée de vie de la pompe et annuler la garantie.

3.4 CARACTERISTIQUES ELECTRIQUES

3.4.1 COURANT, TENSION ET PUISSANCE NOMINALE

Caractéristiques électriques					
Pompe	Tension nominale	Puissance nominale [W]	Courant nominal [A]	Courant nominal (Imax) [A]	Démarrage
NMT(D) MAX (C) 32-120		370	1.8	4.3	
NMT(D) MAX (C) 40-40		110	1	4.3	
NMT(D) MAX (C) 40-80		270	1.3	4.3	
NMT(D) MAX (C) 40-120		480	2.3	4.3	
NMT(D) MAX (C) 40-180	230 VAC + 15 \%,	680	3.4	4.3	
NMT(D) MAX (C) 50-40	$47-63 \mathrm{~Hz}$	160	1.3	4.3	
NMT(D) MAX (C) 50-80	Les pompes	370	1.7	4.3	
NMT(D) MAX (C) 50-120	peuvent	560	2.5	4.3	
NMT(D) MAX (C) 50-120	fonctionner à	830	3.6	4.3	démarrage
NMT(D) MAX (C) 65-40	tension réduite	230	1.1	4.3	
NMT(D) MAX (C) 65-80	avec puissance	560	2.6	4.3	
NMT(D) MAX (C) 65-120		810	3.5	4.3	
NMT(D) MAX (C) 80-40		390	1.8	4.3	
NMT(D) MAX (C) 80-40		390	1.8	4.3	
NMT(D) MAX (C) 80-80		800	3.5	4.3	
NMT(D) MAX (C) 80-80		800	3.5	4.3	

3.5 SPÉCIFICATIONS DE COMMUNICATION

Pour voir les fonctions de communication, voir le chapitre: 5.1 Commande et fonctions. Certaines fonctions ne sont disponibles que sur la NMT (D) MAXC. Spécifications détaillées sur les protocoles utilisés sont décrits dans le manuel de communication.

3.5.1 ENTREES ET SORTIES ANALOGIQUES

Uniquement disponible sur NMT (D) MAX C.
Les connexions peuvent être utilisées soit comme entrées ou sorties, selon la façon dont nous les avons mis. La pompe a 3 connecteurs: SET1, SET2 et SET3.

		Propriétés électriques
Tension d'entrée	$-1-32 \mathrm{VDC}$	Lorsqu'il est utilisé comme entrée. Tension de sortie
$0-12 \mathrm{VDC}$	Lorsqu'il est utilisé comme une sortie. Max. 5 mA de charge sur la sortie individuelle.	
Impédance d'entrée	$\sim 100 \mathrm{k} \Omega$	0.5 mA charge supplémentaire pour la plupart des configurations.
Courant d'entrée mise à la terre	$0-33 \mathrm{~mA}$	Mise à la terre commune sur COM, si elle est utilisée en tant que sortie.
lsolation galvanique	Voltage 4 kV up to $1 \mathrm{~s}, 275 \mathrm{~V}$ permanent.	

3.5.2 SORTIE RELAIS

Disponible uniquement sur les pompes NMT (D) MAX C.

	Propriétés électriques
Courant nominal	3 A
Tension maximale	$230 \mathrm{VAC}, 32 \mathrm{VDC}$

3.5.3 ETHERNET

Disponible uniquement sur les pompes NMT (D) MAX C.

3.5.4 MODBUS

Disponible uniquement sur les pompes NMT (D) MAX C.

	Spécification Modbus				
Protocole de données	Modbus RTU	2+1 pins. Voir le manuel du module NMTC.			
Modbus connecteur	Bornes sans vis	RS-485		Modbus type de connexion	Deux fils + commun
:---	:---				
configuration du Câble de Modbus	Voir section Voir le manuel du module NMTC.				

4 INSTALLATION DE LA POMPE

4.1 INSTALLATION DANS LES LIGNES DE TUYAUTERIE

La pompe est protégée par une double boîte pendant le transport. Elle peut être retirée de la boîte avec des poignées internes ou en le soulevant par le dissipateur de chaleur.

Les pompes sont conçues pour être intégré dans des brides de connexion, en utilisant toutes les vis. Les brides de raccordement combinées sont conçues de sorte que la pompe peut être installée dans la PN6 ou PN10 conduites sous pression nominale. Grâce à la conception combinée de la bride, les rondelles doivent être utilisées sur le côté de la pompe, lors de l'installation de la pompe.

Pour que la pompe fonctionne avec minimum de vibrations et de bruit, elle doit être installée dans des lignes de tuyaux avec son axe 1-1 en position horizontale, comme le montre la figure 1. Les tubes doivent être sans courbes pour au moins 5-10 $\mathrm{D}(\mathrm{D}=$ diamètre nominal du tuyau) à partir des brides.

L'orientation désirée de la tête peut être obtenu en faisant tourner la tête de la pompe (des positions autorisées indiquées sur la figure 2 et 3). La tête de la pompe est montée à la coulée hydraulique avec quatre vis. En dévissant ceux-là, la tête de la pompe peut ensuite être activée (figure 4).

L'ambiant autour de la pompe doit être sèche et éclairée selon le cas et la pompe ne doit pas être en contact direct avec des objets quelconque. Les joints de la pompe empêchent de pénétrer la poussière et les particules comme prescrit par classe IP. Assurez-vous que le couvercle de la boîte de distribution est montés et que les presse-étoupe sont serrés et sont d'étanchéité. La pompe fournira la plus longue durée de vie avec à la température ambiante et à la température moyenne modérée. Un fonctionnement prolongé à des températures élevées pourrait augmenter I'usure. Le vieillissement est accéléré par une puissance élevée et des températures élevées.

- Mauvais branchement ou une surcharge pourrait provoquer l'arrêt de la pompe ou même des dommages permanents.
- Les pompes peuvent être lourdes. Assurez une aide en cas de besoin,
- La pompe ne doit pas être utilisée dans les canalisations de sécurité,
- La pompe ne doit pas être utilisée comme un support pendant le soudage!
- Lors du montage, il faut veiller à assurer l'étanchéité en forme. Par erreur, l'eau pourrait causer des dommages aux pièces internes de la pompe,
- Les drains entre le carter du moteur de la pompe et le logement hydraulique doit être laissé libre (ne doit pas être isolée thermiquement), car elle pourrait interférer avec le refroidissement et la condensation de drainage
- Un milieu chaud peut provoquer des brûlures! Le moteur peut également atteindre des températures qui pourraient causer des blessures.

4.2 INSTALLATION ELECTRIQUE

La pompe a intégré depuis plusieurs fusibles de courant et de protection, protection de la température et de protection contre les surtensions de base. Il n'a pas besoin d'un commutateur supplémentaire de protection thermique. Les câbles de raccordement doivent être capables de supporter la puissance nominale et doivent être correctement fusionnés. Rez-de-connexion du câble est essentiel pour la sécurité. Il doit être connecté le premier. Mise à la terre est uniquement destiné à la sécurité de la pompe. Les tuyaux devraient être mis à la terre séparément.

- Le branchement de la pompe doit être effectuée par du personnel qualifié,
- Le raccordement du câble de raccordement doit être effectué d'une manière qui assure qu'il ne soit jamais en contact avec le carter du dispositif, en raison des températures élevées du boitier,
- Cet appareil peut être utilisé par des enfants âgés de 8 ans et plus et par des personnes avec des capacités sensorielles ou mentales réduites ou celles avec manque d'expérience et de connaissances, si on assure une supervision ou des instructions concernant l'utilisation de l'appareil d'une manière sûre et qu'elles comprennent les risques encourus,
- Les enfants ne doivent pas jouer avec l'appareil,
- Le nettoyage et l'entretien ne peut être exécuté par des enfants sans surveillance.

4.3 INSTALLATION DE COMMUNICATION

Disponible uniquement sur les pompes NMT (D) MAX C.

4.3.1 ENTREE / SORTIE ANALOGIQUE

Description détaillée est disponible dans le manuel du module de communication.

4.3.2 SORTIE RELAIS

Description détaillée est disponible dans le manuel du module de communication.

4.3.3 ETHERNET

Description détaillée est disponible dans le manuel du module de communication.

```
4.3.4 MODBUS
```

Description détaillée est disponible dans le manuel du module de communication.

5 CONFIGURATION ET FONCTIONNEMENT

5.1 FONCTIONS ET COMMANDE

La pompe peut être contrôlée par le panneau d'affichage, le commutateur 10 étapes, entrées analogiques, Modbus ou connexion Ethernet.

- commandes du panneau d'affichage et des aperçus des modes de la pompe, paramètres et état marche / arrêt,
- Commutateur 10-étape nous permet de changer la sortie relais, entrées / sorties analogiques et réinitialiser la configuration de communication des pompes,
- Entrées analogiques nous donnent le contrôle de la pompe (démarrage, arrêt, max courbe, min courbe, 0-.. $10 \mathrm{~V}, 4-20 \mathrm{~mA}, .$.),
- Les sorties analogiques sont utilisées pour obtenir des informations analogiques sur les performances des pompes (erreurs, la vitesse, le mode, le débit, la hauteur),
- La sortie de relais signalise l'état des pompes,
- Les connexions Ethernet offrent le contrôle de toutes les fonctions et paramètres de la pompe (variables des pompes, entrées numériques, aperçu d'erreur),
- Connexion Modbus nous donne la liste de tous les paramètres et réglages (variables des pompes, entrées / sorties analogiques, aperçu d'erreur).
Plusieurs signaux auront une influence sur le fonctionnement de la pompe. Pour cette raison, les paramètres ont des priorités différentes, comme indiqué dans le tableau ci-dessous. Si deux ou plusieurs fonctions sont actives en même temps, celle qui a la plus haute priorité sera prioritaire.

Priorité	Panneau de contrôle de la pompe et les paramètres Ethernet	Signaux externes ${ }^{29}$	Contrôle Modbus
1	Arrêt (OFF)		
2	Mode nuit active ${ }^{30}$		
3	Max. vitesse (Hi)	Courbe minimale	
4		Arrêt (MARCHE pas actif)	
5		Max. vitesse (Hi)	
6			Arrêt
7			
8			
9			

[^14]
5.1.1 PANNEAU D'AFFICHAGE

Avec l'utilisation du panneau d'affichage, vous pouvez contrôler et superviser les modes de pompe, commande marche / arrêt, les paramètres et les erreurs de la pompe. Pour voir comment les modes de pompes fonctionnent, voir le chapitre 5.2 Fonctionnement.

1. Bar graphique affichage des paramètres de la pompe
2. Affichage numérique des valeurs
3. Affichage d'unité
4. Affichage du mode sélectionné
5. Mode nuit
6. \oplus Clé
7. ©Clé
8. © Clé

5.1.1.1 FONCTIONS CLÉS

Θ Clé

Appui court:

- Faire défiler des paramètres vers le bas lorsque ne changent pas les valeurs des paramètres,
- Faire défiler vers le bas les modes lorsque le mode de sélection de est sélectionné,
- Modification des paramètres vers le bas lors de la définition des valeurs de paramètres.

Appui long:

- 3 secondes avec \oplus virer sur le mode nuit,
- 3 secondes avec \oplus verrouiller l'opération de la pompe en cours,
- 5 secondes pour éteindre la pompe,
- 5 secondes avec les touches \odot et \oplus pour restaurer la pompe aux réglages d'usine.
\odot clé
Appui court:
- Pour confirmer les valeurs sélectionnées à la fois du mode et des paramètres.

Appui long:

- 3 secondes pour déclencher la sélection du mode,
- 3 secondes avec le verrouillage de l'opération de la pompe en cours,
- 5 secondes en même temps avec appui long sur \ominus et \oplus touches et pour restaurer la pompe aux réglages d'usine.

\oplus Clé

Appui court:

- Faire défiler les paramètres vers le haut lorsque ne changeant pas les valeurs des paramètres,
- Faire défiler les modes vers le haut lorsque le mode de sélection est sélectionné,
- Modification des paramètres vers le haut lors de la définition des valeurs de paramètres.

Appui long:

- 3 secondes avec nous \ominus met en mode nuit,
- 5 secondes avec les touches Θ et \odot pour restaurer la pompe aux réglages d'usine.

5.1.1.2 ALLUMER ET ETEINDRE

Au premier démarrage la pompe fonctionne avec les réglages d'usine en mode automatique.
Avec des démarrages suivants, la pompe fonctionne avec les derniers paramètres qui ont été fixés avant son arrêt.

Pour arrêter la pompe, appuyez et maintenez la touche Θ pendant 5 secondes, jusqu'à ce que OFF est affiché sur I'écran. Lorsque la pompe est arrêtée, l'affichage numérique indique OFF.

Pour activer la pompe, appuyez brièvement sur la touche Θ.

5.1.1.3 MODES ET PARAMÈTRES DE LA POMPE

Pour la transition entre les modes, nous tenons la touche \odot pendant 3 secondes, puis sélectionnez le mode dans lequel nous souhaitons que la pompe fonctionne avec les touches \oplus ou \ominus. Nous confirmons la sélection avec la touche®.

Après avoir confirmé le mode, le paramètre, qui peut être réglé, sera automatiquement affiché et clignote (sauf pour le mode automatique). Si nécessaire, nous avons fixé la valeur du paramètre avec les touches \oplus et Θ, puis confirmez le réglage avec la touche \odot ou appuyez simplement sur la touche \odot pour accepter le paramètre donné. Nous pouvons faire défiler les paramètres à l'intérieur d'un mode avec les touches \oplus et Θ. Nous sélectionnons le paramètre qui peut être réglé (voir mode individuel) en mode avec la touche \odot et régler la valeur désirée avec les touches \oplus et Θ. Nous confirmons la valeur sélectionnée avec la touche Θ.

5.1.1.4 OPERATION DE VERROUILLAGE DE LA POMPE

Pour verrouiller et déverrouiller le mode en cours et les paramètres de la pompe, maintenez les touches Θ et \odot pendant 3 secondes. Lorsque la pompe est verrouillé, il est possible de faire tourner la pompe en marche et arrêt, voir les paramètres d'affichage et réinitialisez la pompe aux réglages d'usine qui déverrouillent également la pompe.

5.1.2 COMMUTATEUR A 10 ETAPES

Disponible uniquement sur les pompes NMT (D) MAX C.
Il y a un interrupteur rotatif de sélection de mode dans la boîte à bornes. Elle peut être tourné en insérant doucement un tournevis la direction de la flèche ver le pic et en tournant le commutateur à la valeur souhaitée.

La position du commutateur est utilisée lorsque la pompe se met en marche! Plus de détails sur les différents modes peuvent être trouvés dans le manuel de communication.

Position du commutateur de mode	Fonction	Description
0	Configuration libre	Fonctions terminal sont configurées via l'interface de l'Ethernet.
1	Mode 1	SET1 $=$ Démarrage (RUN) entrée
		SET2 = MAX entrée
		SET3 $=$ FB (10.5 V) sortie, utilisé pour fournir des intrants RUN et MAX. Source de tension externe peut également être utilisé. RS-485 = Modbus interface.
2	Mode 2	SET1 = Démarrage (RUN) entrée
		SET2 = Vitesse (SPEED) entrée
		SET3 $=$ FB (10.5 V) sortie, utilisé pour fournir des intrants RUN et MAX. 5-24 V source de tension externe peut également être utilisé. RS-485 = Modbus interface
$3 . .5$	Réservé	Réservé pour l'avenir ou de l'utilisation spécifique du client.
6	Afficher la configuration de relais	LED1 et LED2 montreront la configuration de relais.
7	Changer la configuration de relais	La configuration du relais sera accrue ($0->1,1->2,2->0$) lorsque l'électricité est activée. LED1 et LED2 affichera la configuration en cours du relais.
8	Double remis à l'usine	Pareille comme avec le mode 9, en exception de:
		module IP adresse est réglé sur 192.168.0.246
		Double IP adresse est réglé sur 192.168.0.245
9	Remise à l'usine	Ce mode sera mis en interface de communication aux valeurs par défaut. Le but principal est de restaurer les paramètres par défaut.
		NOTE:
		- Débranchez tout SET1, SET2 et SET3 connexions lorsque vous utilisez ce mode pour éviter toute atteinte au contrôleur. SET1, SET2, SET3 émieront les tensions d'essai de sortie de $10 \mathrm{~V}, 7 \mathrm{~V}$ et 5 V . RS-485 port est activement entraînée. Le cycle du relais tournera. Ceci est utilisé à des fins de test. - Il est recommandé que tous les câbles du module soient déconnectés pour prévenir les dommages possibles aux contrôleurs externes.

5.1.3 ENTREE / SORTIE ANALOGIQUE

Disponible uniquement sur les pompes NMT (D) MAX C.
La pompe dispose de trois entrées / sorties analogiques avec des fonctions différentes. Ils peuvent être configurés via l'interface web (page "pompe") ou par Modbus.

Entrée/Sortie	Fonction	Description de la fonction
SET1	Démarrage (Run) [Default -	
Mode 1]	Tourner la pompe marche / arrêt. Activation par défaut avec connexion à SET3.	
SET2	Max/Min [Default - Mode 1]	Réglez la pompe aux max. paramètres lorsque SET1 est actif et à min. paramètres lorsque SET1 est inactif.
SET3	FB [Default - Mode 1]	10 V Sortie de tension utilisé pour activer SET1 et SET2 en les connectant à SET3.

5.1.4 SORTIE RELAIS

La sortie du relais peut être réglée par une connexion Ethernet sur la page des paramètres et résumé sur la page d'aperçu.

La sortie du relais peut être configuré afin.

Configuration	Description
Démarrage (RUN)	Indique lorsque la pompe est en marche.
Faire fonctionner	Indique lorsque la pompe est en veille.
Erreur [Default]	Indique lorsque la pompe a une erreur.
Pas de fonction	Sortie relais ne montre rien.
Toujours on	Relais toujours fermé.

5.1.5 ETHERNET

Disponible uniquement sur les pompes NMT (D) MAX C.
La pompe est équipée avec un serveur web qui vous permet d'accéder à votre pompe directement via une connexion Ethernet existante. L'adresse par défaut pour l'accès à la pompe est "nmtpump /" ou 192.168.0.245/

Le serveur Web utilise des pages HTML pour définir / voir:

- Les paramètres de régulation du mode
- Les paramètres de régulation (puissance, RPM, tête, écoulement)
- Les réglages de relais
- Les paramètres des entrées de commande externe
- Erreur courante et précédente
- Les statistiques de la pompe (consommation d'énergie, d'exécution et d'autres).

5.1.6 MODBUS

Disponible uniquement sur les pompes NMT (D) MAX C.
La pompe a le client Modbus intégré, grâce auquel nous pouvons accéder à des informations sur la pompe en utilisant la norme RS 485.

Modbus nous permet d'établir et voir:

- Les paramètres de régulation du mode,
- Les paramètres de régulation (puissance, RPM, tête, écoulement),
- Les réglages de relais,
- Les paramètres des entrées de commande externe,
- Erreur courante et précédente,
- Les statistiques de la pompe (consommation d'énergie, d'exécution et d'autres).

5.1.7 RÉINITIALISATION DE LA POMPE À REGLAGES USINE

Pour réinitialiser la pompe aux réglages d'usine tous les trois boutons doivent être détenus pendant 5 secondes. De cette façon, la pompe va se mettre en mode automatique, supprimer les paramètres de hauteur et de puissance précédents et déverrouiller le réglage de fonctionnement de la pompe (si verrouillé).

Remise à zéro du module de communication a besoin d'étapes suivantes:

1. Déconnecter l'alimentation de la pompe,
2. Réglez le commutateur 10 -étapes au numéro 9^{32} (ou 8 pour la pompe double gauche),
3. Démarrer la pompe et éteindre à nouveau,
4. Régler le commutateur 10 -étape au numéro 1,
5. Démarrer la pompe.

Le module de communication devrait maintenant être réglé aux réglages d'usine.

[^15]
5.2 FONCTIONNEMEMENT

La pompe peut fonctionner en 5 modes différents. Nous pouvons régler la pompe dans le mode le plus approprié, en fonction du système où la pompe fonctionne

Les modes de pompe :

- Mode automatique (par défaut),
- Pression proportionnelle,
- Pression constante,
- Vitesse constante,
- Mode combiné (tous les indicateurs de mode sont éteints) - disponible uniquement sur NMT (D) MAX C.

(A)

Mode automatique
En mode automatique, la pompe détermine automatiquement la pression de fonctionnement, ce qui dépend du système hydraulique. Ce faisant, la pompe retrouve la position de fonctionnement optimale.

Ce mode est recommandé dans la plupart des systèmes.

Les paramètres ne peuvent pas être réglés; ils ne peuvent être parcourus.

Pression proportionnelle

La pompe maintient la pression par rapport à l'écoulement courant. La pression est égale à la pression de consigne (Hset sur le dessin) à la puissance maximale; à 0 flux est égal au $\mathrm{HQ} \%$ (par défaut $50 \%, \mathrm{HQ} \%$ peut être réglé sur la page Web de la pompe) de la pression de consigne. Entre-temps, la pression varie linéairement, par rapport à l'écoulement. En mode régulé, nous ne pouvons régler
 la pression de la pompe (Hset sur le dessin). Nous pouvons que faire défiler les autres paramètres.

(E) Pression constante

La pompe maintient la pression actuellement réglée (Hset sur le dessin), de 0 débit à la puissance maximale, où la pression commence à baisser. A pression constante, on ne peut régler que la pression (Hset sur le dessin) laquelle la pompe maintiendra. Nous pouvons que faire défiler les autres paramètres.

(1)

Vitesse constante

La pompe fonctionne à la vitesse actuellement réglée (RPM sur le dessin). Dans le mode non réglementée, on ne peut régler que la vitesse à laquelle la pompe fonctionne. Nous pouvons que faire défiler les autres paramètres.

Mode combiné

Des limites multiples peuvent être seulement réglées à travers l'interface web. Aucun d'autres modes ne se trouvent pas.

(J) Mode nuit

Lorsque la pompe fonctionne en mode nuit, elle passe automatiquement entre le mode actuel et le mode nuit. La fonction du commutateur dépend de la température du milieu.

En mode nuit, son icône est activé et la pompe fonctionne en mode choisi. Si la pompe détecte la baisse de la température du milieu de $15-20^{\circ} \mathrm{C}$ (dans un cadre de temps de 2 heures), l'icône se met à clignoter et la pompe passe en mode nuit. Lorsque la température du milieu monte, clignote arrêts et la pompe retourne au mode de fonctionnement choisi précédemment.

Le mode nuit ne peut fonctionner que comme complément à d'autres modes et n'est pas un mode qui peut fonctionner tout seul.

5.2.1 OPERATION DOUBLE POMPE

La pompe jumelée à un logement à double hydraulique avec valve de contrôle intégrée, qui tourne automatiquement en fonction de débit moyen, et deux moteurs séparés. Les pompes communiquent entre eux via une connexion Ethernet (disponible uniquement sur MAX C). Le mode Nuit n'est pas recommandé dans ce mode de fonctionnement.

Les pompes peuvent fonctionner dans plusieurs modes différents, la commutation entre les pompes est effectuée par le module de communication:

- Fonctionnement alternatif [réglage par défaut] - Une pompe fonctionne alors que l'autre est en attente. Les pompes changent leur rôle toutes les 24 heures ou quand une erreur se produit sur une pompe.
- Opération de sauvegarde - Une pompe fonctionne en permanence et l'autre est en attente. Si une erreur se produit sur la pompe d'exploitation une en attente sera automatiquement prête de commencer à travailler. Ce mode peut être mis en place en éteignant la pompe que nous voulons être en veille. Cela se fait en maintenant le bouton $\Theta p e n d a n t 5$ secondes.
- Fonctionnement en parallèle - Les deux pompes fonctionnent en même temps, avec les mêmes paramètres de pression constante. Ce mode est utilisé quand est nécessaire qu'un plus grand débit sorte et ne peut sortir par une seule pompe. Lorsque la première pompe atteint sa limite d'écoulement la seconde se met en marche et complète le premier à atteindre le débit souhaité.

Ce mode est activé lorsque nous avons fixé les deux pompes en mode de pression constante.

Sur pompes NMT (D) MAX, la commutation est effectuée par l'utilisateur

6 ERREUR ET DÉPANNAGE

En cas si se produit une panne de la pompe, l'erreur provoquant l'échec apparaît dans l'écran d'affichage. Les erreurs sur l'écran sont identifiées comme:

Groupe erreur (X)	Description d'erreur	Cause possible et solution
1	Faible charge détectée	Il n'y a pas de fluide dans la pompe. Vérifiez s'il y a du fluide dans le système.
2	Moteur surchargé	Le courant de charge excessive ou rotor bloqué. Si le problème persiste, vérifiez si le rotor tourne librement.
3	Moteur trop chaud	Le moteur a dépassé la température autorisée et est maintenant s'est arrêté pour se refroidir. Une fois refroidi, il sera automatiquement redémarré.
4	Erreur électronique	Une erreur électronique a été détectée. La pompe peut encore fonctionner, mais a besoin d'entretien.
5	Défaillance du moteur/stator	Il pourrait y avoir une interruption dans le bobinage du moteur. Pompe a besoin d'entretien.

Le code de service (Y) est destiné à un service autorisé.
Si la pompe ne répond pas, la déconnecter et la connecter au réseau électrique.

7 DIAGNOSTIC

7.1 CODES D'ERREURS

Les codes suivants apparaîtront sur le panneau d'affichage et sur le registre approprié de Modbus pour vous aider à diagnostiquer la cause du mauvais fonctionnement.

Code d'erreur	Description	Cause probable
E1x	Erreurs de charge	
E10 (drY)	Faible charge du moteur	Faible charge détectée. La pompe fonctionne à sec.
E11	Charge moteur élevée	Moteur pourrait être défectueux ou milieu visqueux est présent.
E2x	protection actif	
E22 (hot)	La limite de température de convertisseur	Le circuit est trop chaud et la puissance a été réduite à moins de $2 / 3$ de la puissance nominale.
E23	Protection de la température du convertisseur	Le circuit est trop chaud pour fonctionner, la pompe est à l'arrêt
E24	Convertisseur de surintensité	Protection contre les surintensités du matériel déclenché.
E25	Surtension	La tension du secteur est trop élevée
E26	Sous-tension	La tension du secteur est trop faible pour un fonctionnement correct.
E27	PFC surintensité	La correction de la puissance actuelle de circuit ne peut pas être contrôlée
E3x	Les erreurs de la pompe	
E31	La protection du moteur du logiciel actif.	Le courant moyen du moteur était trop élevé, la charge de la pompe est beaucoup plus élevée que prévu
E4x	Codes d'erreur spécifiques de l'appareil	
E40	fréquence générale erreur de convertisseur	Le circuit électrique ne passe pas d'autotest.
E42 (LEd)	LED défectueuse	Une de la diode du segment d'affichage est défectueuse (ouvert / court)
E43 (con)	La Communications a échoué	Le tableau d'affichage ne détecte pas une connexion correcte à la carte principale, mais I'alimentation est présente
E44	DC courant de liaison de décalage	La tension sur DC lien dérive (R34) n'est pas dans la plage attendue
E45	En dehors des limites de température du moteur	Au cours de MFG. TEST, ceci est $10 \mathrm{k} \Omega$, la résistance de 1% pour $10^{\circ} \mathrm{C} .30^{\circ} \mathrm{C}$ En fonctionnement, les valeurs attendues sont de $55^{\circ} \mathrm{C} . .150^{\circ} \mathrm{C}$
E46	En dehors des limites de température de circuit	Au cours de MFG. Test, c'est de $0^{\circ} \mathrm{C} . .50^{\circ} \mathrm{C}$. Pendant le fonctionnement, les valeurs attendues sont de $-55^{\circ} \mathrm{C} . .150^{\circ} \mathrm{C}$
E47	tension de référence en dehors des limites.	La comparaison entre les références internes ne corresponde pas.
E48	15V limites extérieures	15 V l'alimentation n'est pas 15V.
E49	Charge d'essai ne correspond pas	Aucune charge d'essai détectée ou la mesure du courant ne fonctionne pas correctement (MFG. TEST)
E5x	Codes d'erreur du moteur	
E51	Les paramètres du moteur hors de portée	Le moteur ne se comporte pas comme prévu
E52	Protection thermique actif	La température du moteur est trop chaude pour fonctionner.
E53	Modèle sélectionné incorrect	Le modèle de pompe n'est valide ou est hors de portée

KRIVULJE ČRPALK \PUMP CURVES \PUMPEN DIAGRAMME \CURVE DI LAVORO \} PUMPPUKÄYRÄT \ KRIVULJE CRPKA \XAPAKTEPИCTИKИ HACOCA\COURBES DE LA POMPE

NMT(D) MAX (C) 32-120

NMT(D) MAX (C) 40-40

NMT(D) MAX (C) 40-80

NMT(D) MAX (C) 40-120

NMT(D) MAX (C) 40-180

NMT(D) MAX (C) 50-40

NMT(D) MAX (C) 50-80

NMT(D) MAX (C) 50-120

NMT(D) MAX (C) 50-180

NMT(D) MAX (C) 80-80 PN6

1

3

4

Garancijski list

Guarantee

Retailer	Retail company:		
	Date sold:		
Guarantee	Product name:		
	Serial number:		
	Guarantee period		24 months
Manufacturer			
IMP PUMPS d.o.o. Pod hrasti 28 1218 Komenda Slovenia		tel.: +386(0)12806400 fax: +386(0)12806460 e-mail: info@imp-pumps.com	Retaier's signature
Declaration on guarantee and terms of guarantee			
Manufacturer declares: - That the product conforms to the prescribed/declared quality. - That the product will operate faultlessly within the terms of guarantee if the technical instructions provided are observed by user. - That he will repair faults and shortcomings at his own expense caused by eventually differences between the actual and prescribed/declared quality or those due to which the product does not operate faultlessly or the manufacturer will replace the product. - Cost from the previous paragraph for repairing or replacing the product are valid for material, spare parts, work and shipping. - \quad Shipping cost for restitution of the product are only recognized if the product was delivered to the nearest authorized service or retailer and comprise rail or postal charges. - That within the term of guarantee work to maintain or repair the product will be completed within 45 days from submission of a request. - The guarantee will apply within the country that it was sold via an authorized dealer. - That he will keep the spare parts in the stock for three years after the expiration of guarantee period. - That the term of guarantee will be extended for the time the product was being repaired. - That he is bound to fulfill the guarantee obligations under the following conditions: - That the product was used in accordance with technical instructions. - That the product is not mechanically damaged. - That a confirmed guarantee certificate or invoice is enclosed with the product. - That an unauthorized person has not made interventions into the product or non-original parts were incorporated into it			
This guarantee does not exclude consumer rights resulting from the seller's liability for defects in the goods. Repairs under guarantee are made only by an authorized service. The guarantee is only valid with an invoice			

Garantieschein

Händler	Firmenname:		
	Verkaufsdatum:		
Garantie	Produktname:		
	Seriennummer:		
	Garantiezeit	24 Monate	
Hersteller			
IMP PUMPS d.o.o. Pod hrasti 28 1218 Komenda Slovenia		tel.: +386 (0)1 2806400 fax: +386 (0)1 2806460 e-mail: info@imp-pumps.com	Stempel und Unterschrift des Häñlers

Garantieeklärung

Der Hersteller versichert, dass:

- das Produkt während der Garantiezeit einwandfrei funktioniert und frei von Verarbeitungs- und Materialfehlern ist. Dies trifft nur dann zu, wenn das Produkt sachgemäß benutzt und die Gebrauchsanweisungen befolgt wurden.
- er auf seine Kosten jegliche Mängel oder Schäden, die durch Unterschiede zwischen den tatsächlichen und deklarierten Qualitätsmerkmalen des Produktes entstanden sind, oder die Mängel, wegen deren das Produkt nicht einwandfrei funktioniert, zu beheben oder das Produkt zu ersetzen.
- \quad er die Kosten, die durch die Reparatur oder Ersetzung des Produktes entstehen, zu tragen. Die Kosten schließen Material-, Ein- und Ausbau-, Transport- und Übertragungskosten ein, sowie als auch Kosten für Ersatzteile.
- Übertragungs- wie auch Transportkosten werden nur dann vom Hersteller anerkannt, wenn das Produkt zu der nächstgelegenen Vertragswerkstatt oder dem nächstgelegenen autorisierten Händler zugestellt wurde. Der Hersteller übernimmt die Kosten bis zu der Höhe, die nach der gültigen Post- oder Bahngebühr berechnet wird.
- er innerhalb der Garantiezeit die Instandhaltungen oder Reparaturen am Produkt spätestens in 45 Tagen, ab dem Tag an dem er den Garantieanspruch bekommen hat, zu vollenden.
- \quad sich die Garantielaufzeit für die Zeitspanne, von dem Tag an, an dem er den Garantieanspruch vom Käufer erhält und bis zum Tag, an dem das Produkt repariert worden ist, verlängert.
- der Garantieschein bzw. der Verkaufsbeleg für das Produkt beigelegt worden ist.
- die Garantiezeit fängt ab dem Tag an zu laufen, an dem das Produkt dem Käufer ausgehändigt wird.
- die Garantie ist nur im Land des Kaufes und mit vorgelegtem Garantieschein geltend.
- \quad er noch drei Jahre ab dem Ende der Garantiezeit Ersatzteile sowie auch Wertungen gewährleisten wird.

Die Garantie schließt die Rechte des Verbrauchers, die aus der Haftung des Händlers für Mängel an der Ware hervorgehen, nicht aus.

Die Garantie gilt nicht:

- im Falle von Schäden am Produkt, die durch die unsachgemäße Benutzung entstanden sind, sowohl als auch wegen der Nichtbefolgung der Gebrauchsanweisungen.
- im Falle von mechanischen Schäden irgendwelcher Art aufweist.
- wenn das Produkt durch hierfür nicht von IMP PUMPS d.o.o. beauftragte Personen geöffnet, repariert oder modifiziert wurde.

Bei Geltendmachung eines Garantieanspruches ist der Original-Verkaufsbeleg mit Verkaufsdatum beizufügen. Garantiereparaturen dürfen ausschließlich von Vertragswerkstätten durchgeführt werden

Garanzia

Rivenditore	Ragione sociale:	
	Data di vendita:	
Guarantee	Nome prodotto:	
	Numero di serie:	
	Periodo di garanzia 24 mesi	
Produttore		
IMP PUMPS d.o.o. Pod hrasti 28 1218 Komenda Slovenia	```tel.: +386 (0)1 28 06 400 fax: +386(0)1 28 06 460 e-mail: info@imp-pumps.com```	Timbro e firma del rivenditore
Dichiarazioni sulla garanzia e sulle condizioni di garanzia		

II produttore dichiara:

- Che il prodotto ha le caratteristiche di qualità prescritte o dichiarate .
- Che il prodotto funzionerà senza problemi nel periodo di garanzia, se rispettate le istruzioni tecniche fornite.
- Che riparerà danni e difetti a proprie spese, se causati dalle differenze tra le attuali e prescritte o dichiarate caratteristiche di qualità del prodotto, ovvero se causati da difetti per i quali il presente prodotto non funziona perfettamente, o che sostituirà il prodotto con un nuovo.
- I costi del paragrafo precedente che derivano dalla riparazione del prodotto o dalla sua sostituzione con uno nuovo, valgono per materiale, manodopera e trasporto.
- I costi di trasferimento o di trasporto del prodotto vengono riconosciuti solo nel caso in cui il prodotto sia stato consegnato al più vicino centro di assistenza autorizzato o al venditore, entro la somma che è valevole in base alla vigente tariffe postali.
- Che nel periodo di garanzia eseguirà i lavori di manutenzione o riparerà il prodotto entro 45 giorni dal giorno in cui ha ricevuto la richiesta .
- La garanzia si applica all'interno del paese in cui il prodotto e' stato venduto tramite distributore autorizzato; il produttore si impegna a garantire la disponibilita' di parti di ricambio per un period di 3 anni dalla data di scadenza della garanzia.
- \quad Che il periodo di garanzia del prodotto si prolunga per il tempo che va dalla notificazione del danno fino alla sua riparazione.
- Che si obbliga ad adempiere ai vincoli della garanzia alle seguenti condizioni:
- Che il prodotto viene usato in accordo con le istruzioni tecniche.
- Che il prodotto non è stato meccanicamente danneggiato.
- Che il foglio di garanzia o lo scontrino fiscale siano accompagnati al prodotto.
- Che non siano stati fatti interventi da persone non autorizzate o siano stati sostituiti pezzi di ricambio non originali

Questa garanzia non esclude I diritti del consumatore derivanti dalla responsabilita' del rivenditore per difetti sul prodotto.
Le riparazioni contemplate nella garanzia possono essere fatte solo da personale autorizzato dal produttore. La garanzia è valida solo con il foglio di garanzia o con lo scontrino fiscale del rivenditore

Takuu

Myyjä	Jälleenmyyjä:		
	Myyntipäivä:		
Takuu	Tuotteen nimi:		
	Sarjanumero:		
	Takuuaika:		24 kuukautta
Valmistaja			
IMP PUMPS d.o.o. Pod hrasti 28 1218 Komenda Slovenija		$\begin{aligned} & \text { tel.: +386(0)1 } 2806400 \\ & \text { fax: }+386(0) 12806460 \\ & \text { e-mail: } \\ & \text { info@imp-pumps.com } \end{aligned}$	Jäleenmyyän allekiriotus
Takuu ja takuuehdot			
Valmistaja vakuuttaa, että: - Tuote on eritellyn/ilmoitetun laadun mukainen. - Tuote toimii virheettömästi takuuehtojen mukaisesti, jos käyttäjä noudattaa toimitettuja teknisiä ohjeita. - Valmistaja korjaa viat ja puutteet omalla kustannuksellaan tai vaihtaa tuotteen, jos tuote ei ole eritellyn/ilmoitetun laadun mukainen tai jos tuote ei toimi virheettömästi. - Edellisessä kohdassa määritelty tuotteen korjaus tai vaihto kattaa materiaali-, varaosa-, työ- ja toimituskustannukset. - Tuotteen palautuskustannukset hyväksytään vain jos tuote palautetaan lähimpään valtuutettuun huoltoon tai jälleenmyyjälle ja kulut vastaavat juna- tai postilähetyksen kustannuksia. - Takuunalaisen tuotteen huolto- tai korjaustyö suoritetaan 45 päivän kuluessa vaatimuksen esittämisestä. - Takuu on voimassa maassa, jossa valtuutettu jälleenmyyjä myi tuotteen. - Valmistaja takaa varaosien saatavuuden vähintään kolmen vuoden ajan tuotteen takuuajan päättymisestä lukien. - Takuuaikaa pidennetään tuotteen korjausajan verran. - Valmistaja sitoutuu täyttämään takuuvelvoitteensa seuraavin ehdoin: - Tuotetta on käytetty teknisten ohjeiden mukaisesti. - Tuote ei ole mekaanisesti vaurioitunut. - Tuotteen mukana lähetetään täytetty takuutodistus tai lasku. - Valtuuttamaton henkilö ei ole tehnyt luvattomia muutoksia tuotteeseen eikä siihen ole asennettu muita kuin alkuperäisosia			
Tämä takuu ei sulje pois myyjän tuotevastuuseen perustuvia kuluttajan oikeuksia. Vain valtuutettu huolto suorittaa takuukorjauksia. Takuu on voimassa vain laskua vastaan			

Izjava o jamstvu

Prodavatelj	Naziv:		
	Datum kupnje:		
Jamstvo	Naziv artikla:		
	Serijski broj:		
	Jamstveni rok		24 mjeseca
Produttore			
IMP PUMPS d.o.o. Pod hrasti 28 1218 Komenda Slovenija		```tel.: +386 (0)1 }280640 fax: +386(0)1 2806 460 e-mail: info@imp-pumps.com```	Žigi potpis prodavatelja
Jamstvena izjava			
Proizvođač jamči: - Za kvalitetu proizvoda na besprijekorno funkcioniranje u jamstvenom roku, ako se proizvod koristi u skladu s njegovom namjenom i priloženim uputama - Da će o svom trošku otkloniti greške ili kvarove, uzrokovane razlikama između stvarne i propisane ili deklarirane kvalitete, zbog kojih proizvod ne djeluje besprijekorno, ili će proizvođač zamijeniti proizvod novim. - Troškovi iz prethodnog stavka za popravak ili zamjenu, vrijede za materijal, nadomjesne dijelove, rad i prijevoz proizvoda. - Troškovi prijevoza proizvoda se priznaju ukoliko je proizvod dostavljen najbližem ovlaštenom servisu ili prodavaču, do vrijednosti prema važećoj željezničkoj ili poštanskoj tarifi. - Da će u jamstvenom roku izvršiti održavanje ili popravak proizvoda za najduže 45 dana od dana postavljanja zahtjeva. - Da se jamstveni rok proizvodu produžuje za vrijeme od prijave kvara do izvršenog popravka - Da je proizvodu priložen jamstveni list ili račun za kupnju. - Jamstveni rok počinje teći s danom isporuke proizvoda kupcu - Jamstvo vrijedi samo uz priloženi račun i vrijedi na području države u kojoj je proizvod kupljen. - IMP PUMPS d.o.o. se obavezuje, da će još 3 godine osigurati održavanje i nadomjesne dijelove po isteku jamstvenog roka. Ovo jamstvo ne isključuje prava potrošača koja proizlaze iz odgovornosti prodavatelja za nedostatke na robi Jamstvo ne vrijedi u slučaju: - kvarova nastalih zbog nepridržavanja priloženih uputa - fizičkih oštećenja - zahvata neovlaštene osobe ili bilo koje druge prepravke proizvoda			

Jamstveni popravak vrše samo ovlašteni servisi proizvođača. Jamstvo se ostvaruje s potvrđenim jamstvenim listom ili računom prodavatelja

Гарантия

Ритейлер	Компания розничной торговли:			
	Дата продажи:			
Гарантия	Наименование продукта			
	Серийный номер:			
	Срок действия гарантии:		24 месяца	
Изготовитель				
Компания IMP PUMPS d.o.o. Pod hrasti 28 1218 Komenda Slovenia (Словения)		$\begin{aligned} & \text { Тел .: +386(0)1 } 2806400 \\ & \text { Факс : +386 (0)1 } 2806460 \\ & \text { Эл. почта: } \\ & \text { info@imp-pumps.com } \end{aligned}$		Подпись представителя компании-ритейлера

Гарантия и условия ее действия

Настоящим компания-изготовитель гарантирует следующее:

- Качество продукта соответствует необходимому и/или заявленному.
- Бесперебойная работа продукта обеспечена в течение всего гарантийного срока, если пользователь соблюдает все указания прилагаемой к продукту инструкции по эксплуатации.
- Компания-изготовитель обеспечивает устранение сбоев и неполадок за собственный счет, если таковые возникли по причине несоответствия реального качества продукта необходимому и/или заявленному, либо обеспечивает замену непригодного к эксплуатации продукта на пригодный.
- В обозначенные в предыдущем пункте расходы на ремонт или замену продукта входит стоимость материала, запасных частей, работ и транспортировки.
- Расходы на транспортировку при замене продукта компания-изготовитель покрывает только в том случае, если продукт был доставлен ритейлеру или в ближайший авторизированный сервисный центр. В этом случае в покрываемые компанией-изготовителем расходы входят затраты на железнодорожные перевозки и/или почтовые сборы.
- В период действия гарантии работы по техническому обслуживанию и/или ремонту продукта осуществляются в течение 45 дней после подачи соответствующей заявки.
- Гарантия действует в странах, где через продукт продается через авторизированные дилерские сети.
- Запасные части хранятся на складах изготовителя в течение трех лет после истечения стока гарантии.
- Срок действия гарантии продлевается на то время, в течение которого продукт находится в ремонте.
- Компания-изготовитель выполняет свои обязанности по гарантии при следующих условиях:
- Эксплуатация продукта должна осуществляться в строгом соответствии с указаниями инструкции по эксплуатации.
- Продукт не должен иметь механических повреждений.
- К продукту должен прилагаться гарантийный сертификат или накладная.
- В конструкцию прибора не должны вноситься несанкционированные изменения. При замене компонентов конструкции должны использоваться только оригинальные запасные части.

Данная гарантия не отменяет действия прав потребителя, вступающих в силу в связи с ответственностью продавца за дефекты продукции.

Ремонт по гарантии осуществляется только в авторизированных сервисных центрах. Гарантия действительна только при наличии гарантийного сертификата или накладной

Garantie

θ IMPPUMPS

IMP PUMPS d.o.o., Pod hrasti 28, 1218 Komenda, SLOVENIJA
tel.: +386 (0)1 2806 400, fax: +386 (0)1 2806460
e-mail: info@imp-pumps.com
www.imp-pumps.com

[^0]: ${ }^{1}$ Vsi vhodi niso na voljo v vseh načinih delovanja.
 ${ }^{2}$ Zunanji signali in Modbus stop signal postanejo aktivni v nočnem režimu. Zaradi možnosti zmede, odsvetujemo možnost uporabe nočnega režima, ko uporabljamo zunanje signale za krmiljenje.
 ${ }^{3} \mathrm{Ni}$ na voljo ob Modbus komunikaciji.

[^1]: ${ }^{4}$ To nastavi črpalko tudi na desnega dvojčka.

[^2]: ${ }^{5}$ All inputs are not available in every mode of operation.
 ${ }^{6}$ In night mode the external signals and Modbus stop signal become active. Due to the possibility of confusion we do not recommend using the night mode while using external signals.
 ${ }^{7}$ Not available if using Modbus communication.

[^3]: ${ }^{8}$ This also sets up the right twin pump.

[^4]: ${ }^{9}$ Es stehen nicht alle Eingänge bei allen Arbeitsweisen zur Verfügung
 ${ }^{10}$ Aussensignal und Modbus Stop Signal werden bei Funktion Nachtabsenkung aktiv. Bei Anwendung der Pumpe mit externer Ansteuerung raten wir von der Funktion »Nachtabsenkung« ab, da es zu Schwierigkeiten kommen kann.
 ${ }^{11}$ Nicht verfügbar bei Modbus Kommunikation.

[^5]: ${ }^{12}$ Damit wird auch der rechte Pumpenkopf eingestellt.

[^6]: ${ }^{13}$ Tutti gli ingressi non sono disponibili per qualunque modalita' di controllo.
 ${ }^{14}$ In modalita' notturna i segnali esterni e il segnale STOP del Modbus diventano attivi. Per evitare confusioni si sconsiglia l'uso della modalita' notturna in concomitanza ai segnali esterni.
 ${ }^{15}$ Non disponibile se si sta utilizzando la comunicazione via Modbus.

[^7]: ${ }^{16}$ Questo imposta anche il gemello destro.

[^8]: ${ }^{17}$ Kaikki tulot eivät ole käytettävissä kaikissa käyttötavoissa.
 ${ }^{18}$ Yötilassa ulkoiset signaalit ja Modbusin pysäytyssignaali aktivoituvat. Mahdollisten sekaannusten välttämiseksi emme suosittele yötilan käyttöä samaan aikaan ulkoisten signaalien kanssa.
 ${ }^{19}$ Ei käytettävissä Modbus-tiedonsiirron kanssa.

[^9]: ${ }^{20}$ Tämä asettaa myös kaksoispumpun oikeanpuoleisen pumpun.

[^10]: ${ }^{21}$ Svi ulazi nisu dostupni u svim načinima rada.
 ${ }^{22}$ Vanjski signali i ModBus stop signal postaju aktivni u nočnom režimu rada. Zbog mogućnosti zabune ne preporučujemo mogućnost korištenja noćnog režima kada se koriste vanjski signali za kontrolu.
 ${ }^{23}$ Nije dostupan u ModBus komunikaciji.

[^11]: ${ }^{24}$ Ova pozicija također postavlja crpku na desnu crpku dupleksa.

[^12]: ${ }^{25}$ Для разных режимов доступны не все входы.
 ${ }^{26}$ Внешние сигналы и сигналы останова Modbus активируются в ночном режиме. В связи с возможной путаницей мы не рекомендуем включать ночной режим при использовании внешнего управления.
 ${ }^{27}$ Недоступно при использовании протокола Modbus.

[^13]: ${ }^{28}$ Это приведет к изменению настроек и правого насоса.

[^14]: ${ }^{29}$ Toutes les entrées ne sont pas disponibles dans chaque mode de fonctionnement.
 ${ }^{30}$ En mode nuit, le signal externe et le signal d'arrêt Modbus deviennent actifs. En raison de la possibilité de confusion, nous ne recommandons pas d'utiliser le mode nuit tout en utilisant des signaux externes.
 ${ }^{31}$ Non disponible si vous utilisez la communication Modbus.

[^15]: ${ }^{32}$ Cela configure également la pompe double droite.

