Электронные регуляторы и электрические средства управления

Каталог

- Электронные регуляторы температуры
- Датчики и реле температуры и давления

Каталог «Электронные регуляторы и электрические средства управления» RC.08.E1.50 переиздан под тем же названием и номером с небольшими дополнениями общего характера без принципиальных технических изменений.
Изначально каталог был составлен взамен соответствующих разделов «Каталога автоматических регуляторов для систем теплоснабжения зданий» VK.00.M7.50.
В каталог включены электронные регуляторы управления тепловыми пунктами, котельными и центральными вентиляционными установками, датчики и реле температуры и давления. По каждому виду устройств в их технических описаниях приведены основные характеристики, область применения, номенклатура с заводскими кодами для оформления заказов, схемы электрических соединений, габаритные и присоединительные размеры. В каталоге также даны решения по диспетчеризации теплоиспользующих установок, оснащенных регуляторами фирмы Danfoss.

Составлен специалистом ООО «Данфосс» Ю.Б.Васильевым с литературной и технической редакцией В.В.Невского. Замечания и предложения будут приняты с благодарностью. Просим их направлять по факсу: (495) 792-57-59.

Содержание

Введение 4

1. Электронные регуляторы
Регулятор температуры ECL Comfort 100M 5
Регулятор температуры ECL Comfort 100B 9
Регулятор температуры ECL Comfort 200 13
Информационная карта P16 для ECL Comfort 200 17
Информационная карта P30 для ECL Comfort 200 21
Регуляторы температуры ECL Comfort 300, 301 25
Управляющая карта C14 для ECL Comfort 30031
Управляющие карты C60, C62, L62 для ECL Comfort 300, 301 37
Управляющие карты C66, L66 для ECL Comfort 300, 301 45
Управляющая карта C75 для каскадного управления 4 горелками в трехконтурной системе отопления и ГВС 51
Карта А00 - расширения системы каскадного управления горелками 57
Регулятор температуры ECL Comfort 300, 301 с импульсными входами 59
Карта C67 для управления трехконтурной отопительной системой 61
Карта L10 для управления системами обогрева открытых поверхностей 63
Карта L32 для управления комбинированной системой напольного отопления или охлаждения. 67
Комнатная панель ECA 60 71
Блоки дистанционного управления ECA 61, 63 73
Релейный модуль ECA 80 75
Модуль интерфейса Modbus ECA 71 для регуляторов серии ECL Comfort 200, 300, 301 77
Коммуникационный модуль ECA 81 (RS232) 79
Коммуникационный модуль ECA 82 (LonWork) 81
Коммуникационный модуль ECA 87 (RS232, архив) 85
Блок питания ECA 99 87
Модуль переключения ECA 9010 89
OPC-сервер для регуляторов ECL Comfort 91
2. Датчики температуры
Датчики температуры ESMT, ESM-10, ESM-11, ESMB-12, ESMC, ESMU, AKS 97
3. Реле температуры (термостаты)
Термостаты типа KP 101
4. Преобразователи давления и реле давления (прессостаты)
Преобразователь давления типа MBS-3000 105
Реле давления (прессостаты) типа KPI 109
Реле разности давлений типа RT 111
5. Приложение
Некоторые практические вопросы применения регуляторов ECL Comfort 117

Введение

В соответствии с требованиями нормативных документов и жизненной необходимостью современные системы отопления, вентиляции, горячего водоснабжения должны оснащаться средствами автоматического регулирования и управления. Эти приборы и устройства способствуют поддержанию комфортных параметров воздуха в помещениях и требуемой температуры горячей воды, обеспечивают работу систем в оптимальном и безопасном режиме, позволяя при этом экономить энергоносители и сохранять окружающую среду.
Фирма Danfoss разрабатывает, производит и реализует через свои отделения и многочисленных партнеров большое разнообразие средств автоматического регулирования, среди которых значительную долю составляют электронные регуляторы и электрические средства управления тепловыми пунктами и вентиляционными установками.
Представленные в настоящем каталоге электронные регуляторы серии ECL Comfort - специализированные регуляторы, предназначенные для регулирования температуры теплоносителя в системах отопления пропорционально текущей температуре наружного воздуха, либо заданной температуры воды в системах горячего водоснабжения (ГВС). Регуляторы могут также управлять вентиляционными установками или системой обогрева открытых площадок. Серия ECL включает регуляторы: ECL Comfort 100M и 100B, ECL Comfort 200, ECL Comfort 300 и ECL Comfort 301.
Оснащение тепловых пунктов подобными регуляторами местного управления на определенном этапе развития систем централизованного теплоснабжения позволяет легко, быстро и дешево автоматизировать процессы теплопотребления и при этом уже сегодня обеспечить ощутимый экономический эффект, не дожидаясь охвата глобальной диспетчеризацией энергетических систем.
Регуляторы фирмы Danfoss серии ECL не просто снимают проблему автоматизации тепловых пунктов, а решают ее на качественно другом уровне в результате новаций, заложенных в конструкцию этих приборов:

- «Жесткий» алгоритм управления системами отопления, вентиляции и горячего водоснабжения позволяет применить наиболее совершенные и проверенные практикой методы управления системами теплопотребления, исключает затраты времени на программирование и возможные при этом ошибки;
- Универсальность регуляторов обеспечивает применения одного и того же прибора для управления различными системами при их многочисленных разновидностях;
- Использование для переключения регуляторов на управление различными системами интеллектуальных карт с микрочипом (ECL Comfort 300/301). Заводская информация на микрочипе позволяет мгновенно менять алгоритм регулирования в зависимости от схемы применения регулятора, устанавливать настройки прибора на наиболее распространенный режим. На карточку могут быть записаны произвольные индивидуальные настройки конкретного регулятора и перенесены с ней в другие регуляторы однотипного применения;
- Наличие аппаратных и программных средств поддержки фирменных и стандартных коммуникационных протоколов (RS, LON, Modbus-RTU, OPC) обеспечивает широкие возможности как для включения регуляторов в системы управления зданиями других производителей, так и для построения собственных распределенных систем управления установками теплоснабжения.
- Возможность объединения нескольких регуляторов в локальную сеть с целью оптимизации числа внешних датчиков и подключения выносных панелей управления для индивидуального жилья.
Регуляторы ECL просты в монтаже, настройке и эксплуатации, поэтому не требуют для этого высококвалифицированных специалистов. Работа регуляторов осуществляется автономно без необходимости постоянного надзора.
Функционирование систем по заданному алгоритму регуляторы осуществляют путем управления электроприводами регулирующих клапанов на трубопроводах подачи в теплоиспользующие установки тепло- или холодоносителя (см. каталог ООО «Данфосс» «Регулирующие клапаны и электрические приводы»).
В каталоге представлены все необходимые сопутствующие компоненты для работы электронных регуляторов при решении различных задач (датчики и реле температуры и давления, коммуникационные модули и др.).
В связи со все растущими требованиями к управлению теплотехническими установками без постоянного присутствия обслуживающего персонала в каталоге приводятся сведения о возможных схемах диспетчеризации и удаленного их мониторинга при условии применения в них регуляторов фирмы Danfoss.
Информация, представленная в каталоге, достаточна для разработки проекта автоматизации инженерных систем, заказа оборудования и выполнения монтажных работ. Наладка и эксплуатация средств автоматизации должна производится в соответствии с инструкциями, которые, как правило, прилагаются к каждому компоненту при его поставке.

Регулятор температуры ECL Comfort 100M

Описание и область применения

Функции регулятора

Основная функция регулятора ECL Comfort 100M - поддержание температуры теплоносителя, поступающего в систему отопления, пропорционально температуре наружного воздуха. Эта функция выполняется при условии подключения к регулятору датчиков температур наружного воздуха и теплоносителя в системе отопления путем управления регулирующим клапаном на сетевом теплоносителе. Также возможна коррекция регулирования по температуре воздуха в помещении при установке соответствующего датчика. Прибор может обеспечивать периодическое понижение температуры воздуха в помещении, например, в ночные часы. Для этого он должен быть дополнительно укомплектован аналоговым недельным таймером. По команде таймера регулятор снижает температуру воздуха в помещении или температуру теплоносителя в системе отопления на постоянную величину или в зависимости от температуры наружного воздуха.
Регулятор производит автоматическое отключение системы отопления летом, когда температура наружного воздуха превысит заданное значение. В этот период он производит периодическое включение насоса и электропривода клапана.

В режиме ожидания или летнего отключения система отопления защищена от замерзания путем поддержания температуры теплоносителя на минимально допустимом уровне. Для управления регулирующим клапаном (моторным или термоэлектрическим) регулятор имеет тиристорные и релейный выходы для управления насосом. Прибор позволяет осуществлять настройки ряда параметров регулирования (см. таблицу на стр. 7). Регуляторы могут объединяться через шину "BUS" в единую систему с одним датчиком наружного воздуха. Причем тот регулятор, к которому подключен датчик, является ведущим. Через шину "BUS" также возможно подключение к регулятору комнатной панели контроля и настройки температур типа ECA 60 или выносного блока управления с возможностью установки недельной программы регулирования типа ECA 61.
Регулятор может устанавливаться на стене или на DIN-рейке через клеммную панель, а также в вырезе щита управления с использованием крепежного комплекта и клеммных колодок.

Пример применения

Общий вид

Номенклатура и коды для оформления заказа

Регулятор и его корпус

Тип	Назначение	Кодовый номер
ECL Comfort 100M	Универсальный электронный регулятор на ~230 В	$\mathbf{0 8 7 B 1 1 1 0}$
ECL Comfort 100M	Универсальный электронный регулятор на ~24 B	$\mathbf{0 8 7 B 1 1 1 4}$
	Клеммная панель для настенного монтажа	$\mathbf{0 8 7 B 1 1 4 9}$
	Крепежный комплект с клеммными колодками для щитового монтажа	$\mathbf{0 8 7 B 1 1 4 8}$
	Крепежный комплект для монтажа клеммной панели на DIN-рейке*	$\mathbf{0 8 7 B 1 1 4 5}$

* Заказывается в дополнение к клеммной панели.

Датчики

Тип	Назначение	Кодовый номер
ESMT	Датчик температуры наружного воздуха	084N1012
ESM-10	Датчик температуры внутреннего воздуха Pt 1000	087N1164
ESM-11	Поверхностный датчик темпер. теплоносителя Pt 1000	087N1165
ESMU	Погружной датчик темпер. теплоносителя Pt 1000, 100 мм, сталь	084N1050
ESMU	Погружной датчик темпер. теплоносителя Pt 1000,100 мм, медь	084N1052

Дополнительные принадлежности

Тип	Назначение	Кодовый номер
ECA 100	Аналоговый недельный таймер	$\mathbf{0 8 7 B 1 1 4 7}$
ECA 60	Комнатная панель с дисплеем и датчиком комнатной температуры	$\mathbf{0 8 7 B 1 1 4 0}$
ECA 61	Блок дистанционного управления с дисплеем и датчиком комнатной температуры	$\mathbf{0 8 7 B 1 1 4 1}$

Основные технические характеристики

Напряжение питания	~230 или ~24 В; 50/60 Гц
Колебания напряжения	От 21,6 до 26,4 В От 207 до 244 В
Потребляемая мощность	5 Вт
Тип датчика	Pt 1000 Ом/ $/ 0^{\circ} \mathrm{C}$
Температура окружающей среды	$0-50{ }^{\circ} \mathrm{C}$
Температура транспортировки и хранения	От - 40 до $+70^{\circ} \mathrm{C}$
Класс защиты корпуса	IP 41
- маркировка соответствия стандартам	ЕМС-директива 89/336/EEC, 92/31/EEC, 93/68/EEC, EN 50081-1 и EN 50082-1. Директива по низкому напряжению 73/23/EEC и 93/68/EEC

Настройки регулятора

Наименование	Диапазон настройки	Заводская настройка
Наклон температурного графика	От 0,2 до 2,2	1,2
Параллельное смещение температурного графика	+/-8 ${ }^{\text {H }}$	0
Температура летнего выключения, ${ }^{\circ} \mathrm{C}$	Выкл./18	18
Пониженная температура	От 0 до $14{ }^{\circ} \mathrm{C}$ или Авто	Авто
Температура защиты от замораживания, ${ }^{\circ} \mathrm{C}$	Фиксированный	10
Макс. ограничение температуры теплоносителя, ${ }^{\circ} \mathrm{C}$	45; 90	90
Мин. ограничение температуры теплоносителя, ${ }^{\circ} \mathrm{C}$	10; 25	10
Нейтральная зона	Фиксированный	$3^{\circ}{ }^{*}$
Зона пропорциональности	Фиксированный	$80^{\circ}{ }^{\circ}{ }^{*}$
Время интегрирования	Фиксированный	$60 c^{*}$
Постоянная времени привода, с	20 или 120	120

* Заводские настройки, которые не могут быть изменены пользователем.

Схема силовых электричес ких соединений на ~230 В

Внимание!

Не допускается подача фазного напряжения питания из внешних схем на клеммы 3 и 4 во избежание повреждения компонентов.

Схема силовых электрических соединений на ~24 В

Внимание!

Не допускается подача фазного напряжения питания из внешних схем на клеммы 3 и 4 во избежание повреждения компонентов.

Примечание.

Под каждую винтовую клемму может быть подключено максимально по два медных кабеля сечением по 1,5 мм² каждый (максимальная рекомендованная длина кабелея 50 м).

Клемма	Описание	Макс. нагрузка
1L	Напряжение питания ~24 В (фаза)	
2 N	Напряжение питания ~24 В (нейтраль)	
$3 \mathrm{M}_{1}$	Электропривод (открытие)	$1 \mathrm{~A}, \sim 24 \mathrm{~B}$
$4 \mathrm{M}_{1}$	Электропривод или термоэлектропривод ABV (закрытие)	$1 \mathrm{~A}, \sim 24 \mathrm{~B}$
5	Фаза ~24 В для M_{1}	
$9 \mathrm{~K}_{1}$	Вспомогательное реле для циркуляционного насоса	4(2) A, ~230 B
10	Фаза ~24 В для реле насоса P_{1}	

Примечание.

1. Под каждую винтовую клемму может быть подключено максимально по два медных кабеля сечением по 1,5 мм² каждый (максимальная рекомендованная длина кабеля 50 м).
2. Указанная максимальная нагрузка: без скобок — активная, в скобках — индуктивная.

Схема
 подключения датчиков

Клеммы	Описание	Тип (рекомендуемый)
15 и 16	Шина системного устройства	
17 и 16	Датчик температуры наружного воздуха S_{1}	ESMT
18 и 16	Датчик температуры воздуха в помещении S_{2}	ESM-10
19 и 16	Датчик температуры подаваемого в систему теплоносителя S_{3}	ESMU, ESM-11, ESMC

Примечания.

1. Поперечное сечение медного кабеля для присоединения датчика не менее 0,4 мм².
2. Максимальная суммарная рекомендованная длина кабелей (датчики и шина) 100 м (длина кабеля более 100 м может исказить показания датчиков за счет возрастания влияния помех).

Габаритные размеры регулятора и клеммной панели

Техническое описание

Регулятор температуры ECL Comfort 100B

Описание и область применения

ECL Comfort 100B - электронный аналоговый одноканальный регулятор температуры, предназначенный для применения в системе водяного отопления здания с местным генератором теплоты (котлом) на жидком или газообразном топливе.

Функции регулятора

Основная функция регулятора ECL Comfort 100B - поддержание температуры теплоносителя, поступающего в систему отопления, пропорционально температуре наружного воздуха. Эта функция выполняется при условии подключения к регулятору датчиков температур наружного воздуха и теплоносителя в системе отопления путем включения и выключения горелочного устройства котла. Также возможна коррекция регулирования по температуре воздуха в помещении при установке соответствующего датчика. Прибор может обеспечивать периодическое понижение температуры воздуха в помещении, например, в ночные часы. Для этого он должен быть дополнительно укомплектован аналоговым недельным таймером. По команде таймера регулятор снижает температуру воздуха в помещении или температуру теплоносителя в системе отопления на постоянную величину в зависимости от температуры наружного воздуха.
Регулятор производит автоматическое отключение системы отопления летом, когда температура наружного воздуха превысит заданное значение. В этот период он производит периодическое включение насоса.

В режиме ожидания или летнего отключения система отопления защищена от замораживания путем поддержания температуры теплоносителя на минимально допустимом уровне. Для управления насосом и горелочным устройством котла регулятор имеет релейные выходы.
Прибор позволяет осуществлять настройки ряда параметров регулирования (см. таблицу на стр. 11).
Регуляторы могут объединяться через шину «BUS» в систему с одним датчиком наружного воздуха. Причем датчик подключается к единственному регулятору, который является ведущим.
Через шину «BUS» также возможно подключение к регулятору комнатной панели контроля и настройки температур типа ECA 60 или выносного блока управления с возможностью установки недельной программы регулирования типа ECA 61.
Регулятор может устанавливаться на стене или на DIN-рейке через клеммную панель, а также в вырезе щита управления с использованием крепежного комплекта и клеммных колодок.

Пример применения

Общий вид

Номенклатура и коды для оформления заказа

Регулятор и его корпус

Тип	Назначение	Кодовый номер
ECL Comfort 100B	Универсальный электронный регулятор на ~230 B	$\mathbf{0 8 7 B 1 1 0 0}$
ECL Comfort 100B	Универсальный электронный регулятор на ~24 B	$\mathbf{0 8 7 B 1 1 0 4}$
	Клеммная панель для настенного монтажа	$\mathbf{0 8 7 B 1 1 4 9}$
	Крепежный комплект с клеммными колодками для щитового монтажа	$\mathbf{0 8 7 B 1 1 4 8}$
	Крепежный комплект для монтажа клеммной панели на DIN-рейке ${ }^{*}$	$\mathbf{0 8 7 B 1 1 4 5}$

* Заказывается в дополнение к клеммной панели.

Датчики

Тип	Назначение	Кодовый номер
ESMT	Датчик температуры наружного воздуха	084N1012
ESM-10	Датчик температуры внутреннего воздуха Pt 1000	087N1164
ESM-11	Поверхностный датчик темпер. теплоносителя Pt 1000	087N1165
ESMU	Погружной датчик темпер. теплоносителя Pt 1000, 100 мм, сталь	087B1182
ESMU	Погружной датчик темпер. теплоносителя Pt 1000, 100 мм, медь	$\mathbf{0 8 7 B 1 1 8 0}$

Дополнительные принадлежности

Тип	Назначение	Кодовый номер
ECA 100	Аналоговый недельный таймер	$\mathbf{0 8 7 B 1 1 4 7}$
ECA 60	Комнатная панель с дисплеем и датчиком комнатной температуры	$\mathbf{0 8 7 B 1 1 4 0}$
ЕСА 61	Блок дистанционного управления с дисплеем и датчиком комнатной температуры	$\mathbf{0 8 7 B 1 1 4 1}$

Основные технические характеристики

Напряжение питания	~230 или ~24 В; 50/60 Гц
Колебания напряжения	$\begin{aligned} & \text { От } 21,6 \text { до } 26,4 \text { В } \\ & \text { От } 207 \text { до } 244 \text { В } \end{aligned}$
Потребляемая мощность	5 Вт
Тип датчика	Pt 1000 Ом/ $0^{\circ} \mathrm{C}$
Температура окружающей среды	$0-50{ }^{\circ} \mathrm{C}$
Температура транспортировки и хранения	От - 40 до $+70^{\circ} \mathrm{C}$
Класс защиты корпуса	IP 41
маркировка соответствия стандартам	EMC-директива 89/336/EEC, 92/31/EEC, 93/68/EEC, EN 50081-1 и EN 50082-1. Директива по низкому напряжению 73/23/EEC и 93/68/EEC

Настройки регулятора

Наименование	Диапазон настройки	Заводская настройка
Наклон температурного графика	От 0,2 до 2,2	1,2
Параллельное смещение температурного графика	$+/-8 \times \mathrm{H}$	0
Температура летнего выключения, ${ }^{\circ} \mathrm{C}$	Выкл., $15,18,21$	21
Пониженная температура	Выкл. котла или Авто	Авто
${\text { Температура защиты от замораживания, }{ }^{\circ} \mathrm{C}}^{\text {Фиксированный }}$	10	
Макс. ограничение температуры теплоносителя, ${ }^{\circ} \mathrm{C}$	$45,55,80,90$	90
Мин. ограничение температуры теплоносителя, ${ }^{\circ} \mathrm{C}$	$10,30,35,40$	10
Температурный дифференциал между включением и отключением котла	От 1 до 20 или Авто	Авто

Схема силовых электричес-

 ких соединений на ~230 B

Примечание.
Под каждую винтовую клемму может быть подключено максимально по два медных кабеля сечением по 1,5 мм² каждый (максимальная рекомендованная длина кабеля 50 м).

Схема силовых электрических соединений на ~24 B

Примечание.

1. Под каждую винтовую клемму может быть подключено максимально по два медных кабеля сечением по 1,5 мм² каждый (максимальная суммарная рекомендованная длина кабелей 50 м).
2. Указанная максимальная нагрузка: без скобок - активная, в скобках - индуктивная.

Схема подключения

 датчиков

Клеммы	Описание	Тип (рекомендуемый)
15 и 16	Шина системного устройства	
17 и 16	Датчик температуры наружного воздуха S_{1}	ESMT
18 и 16	Датчик температуры воздуха в помещении S_{2}	ESM-10
19 и 16	Датчик температуры подаваемого в систему теплоносителя S_{3}	ESMU, ESM-11, ESMC

Примечания.

1. Поперечное сечение медного кабеля для присоединения датчика не менее 0,4 мм².
2. Максимальная рекомендованная длина кабелей (датчики и шина) 100 м в сумме (длина кабелей более 100 м может исказить показания датчиков за счет возрастания влияния помех).

Габаритные размеры регулятора и клеммной панели

Техническое описание

Регулятор температуры ECL Comfort 200

Описание и область применения

Карты ECL и прикладные задачи

Регулятор ECL Comfort 200 может быть переключен на различные прикладные задачи с помощью кнопок \oplus и $($ в соответствующей строке меню желтой стороны карты согласно инструкции.
Каждая информационная карта обеспечивает функционирование регулятора ECL Comfort 200 применительно к конкретной схеме теплоснабжения.
Выбор карты и специфических настроек регулятора определяется требованиями схемы теплоснабжения.

Пример применения

Общий вид

Номенклатура и коды для оформления заказа

На дисплей выводится вся информация о состоянии системы отопления. На одном из дисплеев, который может быть выбран как рабочий, показано программирование времени и параметров системы. Дисплей используется также для установки параметров регулирования.

Регулятор и его корпус

Тип	Назначение	Кодовый номер
ECL Comfort 200	Универсальный электронный регулятор на ~230 B	087B1120
ECL Comfort 200	Универсальный электронный регулятор на ~24 B	087B1124
	Клеммная панель для настенного монтажа	087B1149
	Крепежный комплект с клеммными колодками для щитового монтажа	087B1148
	Крепежный комплект для монтажа клеммной панели на DIN-рейке *	087B1145

* Заказывается в дополнение к клеммной панели.

Датчики

Тип	Назначение	Кодовый номер
ESMT	Датчик температуры наружного воздуха	084N1012
AKS-21M	Датчик универсальный	084N2003
ESM-10	Датчик температуры наружного и внутреннего воздуха Pt 1000	087N1164
ESM-11	Поверхностный датчик темпер. теплоносителя Pt 1000	087N1165
ESMC	Поверхностный датчик температуры теплоносителя Pt 1000	087N0011
ESMU	Погружной датчик темпер. теплоносителя Pt 1000, 100 мм, сталь	$\mathbf{0 8 7 B 1 1 8 2}$
ESMU	Погружной датчик темпер. теплоносителя Pt 1000,100 мм, медь	$\mathbf{0 8 7 B 1 1 8 0}$

Дополнительные принадлежности

Тип	Назначение	Кодовый номер
ECA 60	Комнатная панель с дисплеем и датчиком комнатной температуры	$\mathbf{0 8 7 B 1 1 4 0}$
ECA 61	Блок дистанционного управления с дисплеем и датчиком комнатной температуры	$\mathbf{0 8 7 B 1 1 4 1}$
ECA 81	Коммуникационный модуль RS232	$\mathbf{0 8 7 B 1 1 5 1}$
ECA 82	Коммуникационный модуль LON	$\mathbf{0 8 7 B 1 1 5 2}$
ECA 71	Коммуникационный модуль RS485-Modbus-RTU	$\mathbf{0 8 7 B 1 1 2 6}$

Коммуникации

характеристики

Основные технические

Регуляторы могут объединяться через шину "BUS" в единую систему с одним датчиком наружного воздуха. Причем регулятор, к которому подключен датчик, является ведущим. К системной шине "BUS" регулятора может

подключаться блок дистанционного управления или комнатная панель.
Для обеспечения связи с компьютером через LON и RS232, RS485-Modbus-RTU в регулятор могут быть встроены коммуникационные модули.

Тип датчика	Pt $1000\left(1000\right.$ Om $\left./ 0^{\circ} \mathrm{C}\right)$
Температура окружающей среды	$0-50{ }^{\circ} \mathrm{C}$
Температура транспортировки и хранения	От -40 до $+70^{\circ} \mathrm{C}$
Корпус	Для монтажа настенного, щитового и на DIN-рейке
Класс защиты корпуса	IP 41
$\begin{aligned} & \text { C - маркировка } \\ & \text { соответствия стандартам } \end{aligned}$	EMC-директива 89/336/EEC, 92/31/EEC, 93/68/EEC, EN 50081-1 и EN 50082-1. Директива по низкому напряжению 73/23/EEC и 93/68/EEC

Общая схема электрических соединений на ~230 B

Внимание!

Не допускается подача фазного напряжения питания из внешних схем на клеммы 3 и 4 во избежание повреждения компонентов.

Напряжение питания	~ 230 В; 50/60 Гц
Колебания напряжения	От ~207 до ~244 В (IEC 60038)
Потребляемая мощность	5 Вт
Нагрузка на релейных выходах	$4(2)$ А; ~230 В
Нагрузка на тиристорных выходах	0,2 A; ~230 В

Общая схема электрических соединений на ~24 B

Внимание!

Не допускается подача фазного напряжения питания из внешних схем на клеммы 3 и 4 во избежание повреждения компонентов.

Напряжение питания	~ 24 В, $50 / 60$ Гц
Колебания напряжения	От 21,6 до 26,4 В (IEC 60038)
Потребляемая мощность	5 Вт
Нагрузка на релейных выходах	$4(2)$ А, ~ 24 В
Нагрузка на тиристорных выходах	1 A, ~ 24 В

Примечание.

Общая суммарная длина кабеля к датчикам температуры и шины"Bus" не должна превышать 100 м, иначе возрастает риск потери помехозащитности.

Габаритные размеры регулятора и клеммной панели

Техническое описание

Информационная карта P16 для ECL Comfort 200

Описание
и область применения

Информационная пластиковая карта P16 предназначена для облегчения настройки электронного регулятора ECL Comfort 200 в технологических схемах систем горячего водоснабжения, проиллюстрированных на нижеприведенных рисунках. Переключение регулятора на работу с картой P16 осуществляется с помощью кнопок. После этого регулятор будет поддерживать постоянную температуру воды, подаваемой в систему горячего водоснабжения. Регулятор, настроенный на работу с картой P16, кроме функций регулирования, позволяет:

программировать снижение температуры горячей воды по часам суток и дням недели; - обеспечивать недопустимость превышения заданного значения температуры теплоносителя, возвращаемого в теплосеть (в технологических схемах 1 и 2).
Прибор с картой P16 позволяет осуществлять ручную настройку ряда параметров регулирования (см. таблицу на стр. 20), а также выполнять автоматическую самонастройку. В качестве температурных датчиков в схемах регулирования используются термометры сопротивления типа Pt 1000.

Номенклатура и коды для оформления заказа

Тип карты	Язык описания карты	Кодовый номер
P16	Русский	$\mathbf{0 8 7 B 4 6 8 6}$
P16	Английский	$\mathbf{0 8 7 B 4 6 6 3}$

Применение

 ECL Comfort 200 скартой P161. Система горячего водоснабжения со скоростным водонагревателем и регулирующим клапаном на сетевом теплоносителе (тип 1)

2. Система горячего водоснабжения с емкостным водонагревателем и регулирующим клапаном на сетевом теплоносителе (тип 2)

3. Система горячего водоснабжения с емкостным водонагревателем и трехходовым смесительным клапаном в контуре ГВС (тип 3)

Принцип регулирования

ПИ-регулирование температуры воды S_{3}, поступающей в систему горячего водоснабжения, с отслеживанием температуры теплоносителя S_{4}, возвращаемого в теплосеть (в технологических схемах 1 и 2).

Температура горячей воды поддерживается с помощью клапана с электроприводом M_{1}, управляемым через тиристорный выход. Циркуляционный насос P_{2} включается и выключается с помощью реле R_{2}.

Электрические соединения
 ECL Comfort 200 с картой P16

Подключение силовых цепей на ~230 B (общая схема)

Клемма	Описание	Макс.нагрузка
1 L	Напряжение питания ~ 230 В (фаза)	
2 N	Напряжение питания $\sim 230 \mathrm{~B}$ (нейтраль)	
$3 \mathrm{M}_{1}$	Электропривод (открытие)	$0,2 \mathrm{~A}, \sim 230 \mathrm{~B}$
$4 \mathrm{M}_{1}$	Электропривод (закрытие)	$0,2 \mathrm{~A}, \sim 230 \mathrm{~B}$
5	Фаза ~230 В для M_{1}	
$11 \mathrm{P}_{2}$	Циркуляционный насос	$4(2) \mathrm{A}, \sim 230 \mathrm{~B}$
12	Фаза ~ 230 В для реле насоса R_{2}	

Подключение силовых цепей на ~24 В (общая схема)

Клемма	Описание	Макс.нагрузка
1 L	Напряжение питания ~24 В (фаза)	
2 N	Напряжение питания ~24 В (нейтраль)	
$3 \mathrm{M}_{1}$	Электропривод (открытие)	$1 \mathrm{~A}, \sim 24 \mathrm{~B}$
$4 \mathrm{M}_{1}$	Электропривод (закрытие)	$\sim 24 \mathrm{~B}$
5	Фаза ~24 В для привода M_{1}	
11 К $_{2}$	Дополнительное реле для циркуляционного насоса P_{2}	Обмотка на ~24 B, контакты на 4(2) A, ~230 В
12	Фаза ~24 В для реле насоса К ${ }_{2}$	

Примечания.

1. Поперечное сечение кабеля для питающего напряжения $0,75-1,5$ мм²2.
2. В каждую винтовую клемму могут быть введены два кабеля сечением до 1,5 мм².
3. В клеммной панели ECL Comfort 200 необходимо установить перемычки между клеммами 1-5-12 и между общей колодкой "N" и клеммой 2.
4. Указанная максимальная нагрузка: без скобок — активная; в скобках — индуктивная.
5. Материал кабелей - медь.

Электрические соединения
 ECL Comfort 200
 с картой P16
 (продолжение)
 Подключение датчиков

Клеммы	Описание	Тип датчика
15 и 16	Системная шина	
19 и 16	Датчик темпер. горячей воды S_{3}	ESM-11, ESMU
20 и 16	Датчик темпер. теплоносителя S_{4}, возвращаемого в теплосеть	$\mathrm{ESM}-11, \mathrm{ESMU}$

Примечания.

1. В клеммной панели ECL Comfort 200 необходимо установить перемычку между общей колодкой и клеммой 16.
2. Минимальное поперечное сечение кабеля для присоединения датчика 0,4 мм².
3. Максимальная длина кабеля датчика или шины 50 м (длина кабелей более 100 м может исказить показания датчиков).
4. Материал кабелей - медь.

Основные настройки

 регулятора| Наименование | Диапазон настройки | Заводская
 настройка |
| :--- | :---: | :---: |
| Температура горячей воды, ${ }^{\circ} \mathrm{C}$ | От 10 до 110 | 50 |
| Ограничение температуры теплоносителя, возвращаемого
 в теплосеть, ${ }^{\circ} \mathrm{C}$ | От 10 до 110 | 50 |
| Нейтральная зона, ${ }^{\circ} \mathrm{C}$ | От 0 до 9 | 3 |
| Зона пропорциональности, ${ }^{\circ} \mathrm{C}$ | От 1 до 250 | 80 |
| Время интегрирования, с | От 5 до 999 | 20 |
| Время пробега клапана с электроприводом, с | От 5 до 250 | 15 |

Техническое описание

Информационная карта P30 для ECL Comfort 200

Описание и область применения

Информационная пластиковая карта P30 предназначена для облегчения настройки электронного регулятора ECL Comfort 200 в технологических схемах систем водяного отопления, проиллюстрированных на нижеприведенных рисунках. Переключение регулятора на работу с картой P30 осуществляется с помощью кнопок. После этого регулятор будет поддерживать температуру теплоносителя, поступающего в систему отопления, в зависимости от температуры наружного воздуха в соответствии с установленным температурным графиком. Регулятор, настроенный на работу с картой P30, кроме функций регулирования, позволяет:

- осуществлять регулирование с коррекцией по температуре воздуха в помещении (при установке комнатного датчика);
- обеспечивать недопустимость превышения заданного температурным графиком значения температуры теплоносителя, возвращаемого в теплосеть;
- программировать снижение температуры воздуха в помещении по часам суток и дням недели;
- производить форсированный натоп помещений после периода снижения температуры внутреннего воздуха;
- автоматически отключать систему отопления на летний период при переходе температуры наружного воздуха определенной границы;

- периодически включать электроприводы насоса и регулирующего клапана во время летнего отключения системы отопления;
- защищать систему отопления от замораживания.
Прибор позволяет осуществлять настройки ряда параметров регулирования (см. таблицу на стр. 24).
В качестве температурных датчиков в схемах регулирования используются термометры сопротивления типа Pt 1000. Регуляторы могут объединяться через шину "BUS" в единую систему с одним датчиком наружного воздуха. Причем регулятор, к которому подключен датчик, является ведущим в системе. С помощью шины "BUS" также возможно подключение к регулятору комнатной панели контроля и настройки температуры внутреннего воздуха типа ECA 60 или выносного блока дистанционного управления типа ECA 61.

Номенклатура и коды
для оформления заказа

Тип карты	Язык описания карты	Кодовый номер
P30	Русский	$\mathbf{0 8 7 B 4 6 5 9}$
P30	Английский	$\mathbf{0 8 7 B 4 6 5 3}$

Применение

ECL Comfort 200 с картой P30

1. Система отопления при независимом присоединении (через водоподогреватель) к тепловым сетям

3. Местная система отопления с котлом и трехходовым клапаном

Принцип регулирования

ПИ-регулирование температуры теплоносителя S_{3}, поступающего в систему отопления, в зависимости от температуры наружнего воздуха S_{1} с коррекцией по температуре внутреннего воздуха S_{2} и отслеживанием температуры теплоносителя S_{4}, возвращаемого в теплосеть.
2. Система отопления при зависимом присоединении к тепловым сетям

4. Местная система отопления с котлом и четырехходовым клапаном

Температура теплоносителя поддерживается с помощью клапана с электроприводом M_{1} через тиристорный выход. Циркуляционный насос P_{1} управляется с помощью реле R_{1}.

Электрические

 соединенияECL Comfort 200 с картой P 30

Подключение силовых цепей

на ~230 B (общая схема)

Клемма	Описание	Макс. нагрузка
1 L	Напряжение питания ~ 230 В (фаза)	
2 N	Напряжение питания ~230 В (нейтраль)	
$3 \mathrm{M}_{1}$	Электропривод (открытие)	$0,2 \mathrm{~A}, \sim 230 \mathrm{~B}$
$4 \mathrm{M}_{1}$	Электропривод или термоэлектропривод ABN (закрытие)	$0,2 \mathrm{~A}, \sim 230 \mathrm{~B}$
5	Фаза ~230 В для M_{1}	
$11 \mathrm{P}_{1}$	Циркуляционный насос	$4(2) \mathrm{A}, \sim 230 \mathrm{~B}$
12	Фаза ~230 В для реле насоса R_{1}	

Подключение силовых цепей

 на ~24 B (общая схема)

Клемма	Описание	Макс.нагрузка
1 L	Напряжение питания ~24 В (фаза)	
2 N	Напряжение питания ~24 В (нейтраль)	$1 \mathrm{~A}, \sim 24 \mathrm{~B}$
$3 \mathrm{M}_{1}$	Электропривод (открытие)	$1 \mathrm{~A}, \sim 24 \mathrm{~B}$
$4 \mathrm{M}_{1}$	Электропривод (закрытие)	
5	Фаза ~24 В для привода M_{1}	Обмотка на ~24 В, контакты на 4(2) А, ~230 В
$9 \mathrm{~K}_{1}$	Дополнительное реле для циркуляционного насоса P_{1}	
12	Фаза ~24 В для реле насоса K_{1}	

Примечания.

1. Поперечное сечение кабеля для питающего напряжения 0,75-1,5 мм².
2. В каждую винтовую клемму могут быть введены два кабеля сечением до 1,5 мм².
3. В клеммной панели ECL Comfort 200 необходимо установить перемычки между клеммами 1-5-12 и между общей колодкой "N" и клеммой 2.
4. Указанная максимальная нагрузка: без скобок — активная; в скобках — индуктивная.
5. Материал кабелей - медь.

Электрические

 соединенияECL Comfort 200
с картой P 30
(продолжение)

Подключение датчиков

(общая схема)

Клемма	Описание	Тип датчика
15 и 16	Системная шина	ESMT
17 и 16	Датчик температуры наружного воздуха S_{1}	ESM-10
18 и 16	Датчик температуры воздуха в помещении S_{2}	ESM-11, ESMU
19 и 16	Датчик температуры теплоносителя в системе отопления S_{3}	ESM-11, ESMU
20 и 16	Датчик температуры теплоносителя, возвращаемого в теплосеть S_{4}	

Примечания.

1. В клеммной панели ECL Comfort 200 необходимо установить перемычку между общей колодкой и клеммой 16 . 2. Минимальное поперечное сечение кабеля для присоединения датчика 0,4 мм².
2. Максимальная рекомендованная длина кабеля датчика или шины 100 м (длина кабелей более 100 м может исказить показания датчиков за счет влияния помех).
3. Материал кабелей - медь.

Основные настройки регулятора

Наименование	Диапазон настройки	Заводская настройка
Наклон температурного графика	От 0,2 до 3,4	1,8
Параллельное смещение температурного графика	От -9 до 9	0
Температура летнего отключения, ${ }^{\circ}$ С	От 10 до 30	18
Макс. ограничение температуры теплоносителя, подаваемого в систему отопления, ${ }^{\circ}$ С	От 10 до 110	90
Мин. ограничение температуры теплоносителя, подаваемого в систему отопления, ${ }^{\circ}$ С	От 10 до 110	40
Нейтральная зона, ${ }^{\circ} \mathrm{C}$	От 0 до 9	3
Зона пропорциональности, ${ }^{\circ} \mathrm{C}$	От 1 до 250	80
Время интегрирования, с	От 5 до 999	30
Постоянная времени клапана с электроприводом, с	От 5 до 250	35

Техническое описание

Регуляторы температуры ECL Comfort 300, 301

Описание
и область применения

Управляющие карты ECL и прикладные задачи

ECL Comfort 300, 301 - электронные регуляторы температуры, которые настраиваются для работы в различных технологических схемах систем теплоснабжения зданий с помощью управляющих карт.
Регуляторы имеют тиристорные выходы для управления приводом регулирующего клапана и релейные выходы для управления насосом или горелочным устройством котла. К регулятору возможно подключение до шести температурных датчиков градуировки Pt 1000, дистанционных панелей контроля и управления, дополнительного релейного и коммуникационных модулей.
Корпуса регуляторов ECL Comfort 300, 301 разработаны для настенного монтажа, для установки в вырезе щита управления или на DIN-рейке. Регуляторы имеют встроенный коммуникационный модуль RS232 с разъемом на передней панели.

Регуляторы ECL Comfort 300, 301 могут быть переключены на различные прикладные задачи с помощью управляющих карт типа С и L. Каждая карта обеспечивает функционирование регулятора применительно к конкретной схеме теплоснабжения. Выбор карты и специфических настроек регулятора определяется требованиями схемы теплоснабжения.

Техническое описание Регуляторы температуры ECL Comfort 300, 301

Прикладные задачи для регулятора ECL 300

Тип карты	Кодовый номер	Описание приложения	Функция регулирования	Тип регулирования
C14	087B4824	Управление клапанами, вентилятором и заслонкой в системе вентиляции, воздушного отопления или охлаждения	Постоянная температура воздуха	ПИ-регулирование
C25	087B4770	Управление горелочным устройством котла и насосами в системе отопления и ГВС с емкостным водоподогревателем	Погодная компенсация температуры теплоносителя и постоянная температура воды в системе ГВС	Вкл./Выкл.
C35	087B4761	Управление клапаном и насосами в системе отопления и ГВС с емкостным водонагревателем	Погодная компенсация температуры теплоносителя и постоянная температура воды в системе ГВС	ПИ-регулирование и Вкл./Выкл.
C37	087B4758	Управление клапаном и насосами в системе отопления и ГВС со скоростным водонагревателем и баком-аккумулятором	Погодная компенсация температуры теплоносителя и постоянная температура воды в системе ГВС	ПИ-регулирование и Вкл./Выкл.
C55	087B4783	Управление горелочным устройством котла, клапаном и насосами в параллельных системах отопления и ГВС с емкостным водонагревателем	Погодная компенсация температуры теплоносителя и постоянная температура воды в системе ГВС	Вкл./Выкл. и ПИ-регулирование
C60	087B4756	Управление клапанами и насосами в двух системах отопления с общим контролем обратного теплоносителя	Погодная компенсация температуры теплоносителя	ПИ-регулирование
C62	087B4808	Управление клапанами и насосами в двух системах отопления с раздельным контролем обратного теплоносителя	Погодная компенсация температуры теплоносителя	ПИ-регулирование
C66	087B4757	Управление клапанами и насосами в системе отопления и ГВС со скоростным водонагревателем	Погодная компенсация температуры теплоносителя и постоянная температура воды в системе ГВС	ПИ-регулирование
C67	087B4820	Управление клапанами двух отопительных контуров. Позиционное регулирование контура ГВС с баком-аккумулятором		ПИ-регулирование и Вкл./Выкл.
C75	087B4825	Управление двумя (четырьмя) горелочными устройствами котлов, насосами и клапанами для двух систем отопления и ГВС с емкостным водонагревателем	Погодная компенсация температуры теплоносителя и постоянная температура воды в системе ГВС	Вкл./Выкл. и ПИ-регулирование
AOO	087B4962	Расширение возможностей регулятора с картой C75 (управление до восьми горелочных устройств)		Вкл./Выкл.

Прикладные задачи для регулятора ECL 301

Тип карты	Кодовый номер	Описание приложения	Функция регулирования	рип регулирования
L10	$\mathbf{0 8 7 B 4 8 7 4}$	Управление температурой теплоносителя для удаления снега и льда с поверхностей	Погодная компенсация по наружной температуре и датчику снега/льда	ПИ-регулирование и Вкл./Выкл.
L32	$\mathbf{0 8 7 B 4 8 5 4}$	Управление температурой подачи в напольных системах отопления/охлаждения	Погодная компенсация по наружной температуре и датчику влажности	ПИ-регулирование и Вкл./Выкл.
L66	$\mathbf{0 8 7 B 4 8 7 5}$	Управление клапанами и сдвоенными насосами в системе отопления и ГВС. Контроль двух насосных групп	Погодная компенсация отопления и постоянная температура ГВС	ПИ-регулирование и Вкл./Выкл.
L62	$\mathbf{0 8 7 B 4 8 8 7}$	Управление клапанами и сдвоенными насосами в двух контурах отопления	Погодная компенсация в двух контурах отопления	ПИ-регулирование и Вкл./Выкл.

Пример применения

Схема, соответствующая карте С66

Общий вид

Пример дисплея

На дисплее отображается информация о состоянии системы отопления. Программирование времени и параметров системы показано на одном из дисплеев, который может быть выбран как рабочий. Дисплей используется также для установки параметров регулирования.

Номенклатура и коды для оформления заказа

Регулятор и корпус

Тип	Назначение	Кодовый номер
ECL Comfort 300	Универсальный электронный регулятор на ~230 В	087B1130
ECL Comfort 300	Универсальный электронный регулятор на ~24 В	087B1134
	Клеммная панель для настенного монтажа	087B1149
	Крепежный комплект с клеммными колодками для щитового монтажа	087B1148
	Крепежный комплект для монтажа клеммной панели на DIN-рейке*	087B1145
ECL Comfort 300 с модулем ECA 88	Универсальный регулятор на ~ 220 В с импульсными входами для датчиков тепла/энергии	087B1131
ECL Comfort 301	Универсальный регулятор на ~220 В	087B1834
ECL Comfort 301 с модулем ECA 88	Универсальный регулятор на ~ 220 В с импульсными входами для датчиков тепла/энергии	087B1835

* Заказывается в дополнение к клеммной панели.

Дополнительные принадлежности

Тип	Назначение	Кодовый номер
ECA 60	Комнатная панель с дисплеем и датчиком комнатной температуры	$\mathbf{0 8 7 B 1 1 4 0}$
ECA 61	Блок дистанционного управления с дисплеем и датчиком комнатной температуры	$\mathbf{0 8 7 B 1 1 4 3}$
ECA 63	Блок дистанционного управления с дисплеем, датчиками влажности воздуха и комнатной температуры	$\mathbf{0 8 7 B 1 1 4 3}$
ECA 71	Коммуникационный модуль (RS485, Модbus)	$\mathbf{0 8 7 B 1 1 2 6}$
ECA 80	Релейный модуль - 2 реле на 2 положения	$\mathbf{0 8 7 B 1 1 5 0}$
ECA 81*	Коммуникационный модуль RS232 (для тыльного выхода)	$\mathbf{0 8 7 B 1 1 5 1}$
ECA 82	Коммуникационный модуль LON	$\mathbf{0 8 7 B 1 1 5 2}$
ECA 87	Коммуникационный модуль (RS232, архив)	$\mathbf{0 8 7 B 1 1 6 0}$
ECA 99	Блок питания на 24 В пер. тока (трансформатор 35ВA)	$\mathbf{0 8 7 B 1 1 5 6}$
ECA 9010	Модуль переключения	$\mathbf{0 8 7 B 3 0 8 1}$

* Без применения этого модуля возможно подключение по RS232 по разъему.

Датчики

Тип	Назначение	Кодовый номер
ESM-10	Датчик температуры внутреннего воздуха Pt 1000	$\mathbf{0 8 7 N 1 1 6 4}$
ESM-11	Поверхностный датчик темпер. теплоносителя Pt 1000	$\mathbf{0 8 7 N 1 1 6 5}$
ESMB	Универсальный датчик темпер. теплоносителя/воздуха Pt 1000, $\varnothing 6$ мм	$\mathbf{0 8 7 N 0 0 1 0}$
ESMC	Поверхностный датчик темпер. теплоносителя Pt 1000	$\mathbf{0 8 7 N 0 0 1 1}$
ESMT	Датчик температуры наружного воздуха	$\mathbf{0 8 4 N 1 0 1 2}$
ESMU	Погружной датчик темпер. теплоносителя Pt 1000, 100 мм, сталь	$\mathbf{0 8 7 B 1 1 8 2}$
ESMU	Погружной датчик темпер. теплоносителя/воздуха Рt 1000, 250 мм, сталь	$\mathbf{0 8 7 B 1 1 8 3}$
ESMU	Погружной датчик темпер. теплоносителя Pt 1000, 100 мм, медь	$\mathbf{0 8 7 B 1 1 8 0}$
ESMU	Погружной датчик темпер. теплоносителя Pt 1000, 250 мм, медь	$\mathbf{0 8 7 B 1 1 8 1}$
AKS21M	Универсальный датчик, расширенный диапазон Pt 1000	$\mathbf{0 8 4 N 2 0 0 3}$

Функции

Дисплей для контроля и установок. Регулятор может быть использован как контроллер в системах диспетчеризации и автономно. К шине системного устройства могут быть подключены дистанционное управление или комнатная панель.
Карта C66 поддерживает функцию автонастройки для параметров регулирования контура ГВС. Следует иметь в виду, что эта функция корректна только при использовании клапанов фирмы Danfoss VB2 и VM2 с составной линейной характеристикой, а также клапанов VF и VFS с логарифмической характеристикой.

Функция защиты двигателя, обеспечивающая стабильное управление при малых расходах и долгий срок службы, доступна во всех картах типа C, кроме карты C14.
К регулятору для обеспечения связи могут быть подключены дополнительные коммуникационные модули.
Для работы регулятора с некоторыми картами в него может быть встроен дополнительный релейный модуль.
На лицевой стороне, под крышкой, размещен разъем RS232 для дистанционного управления. Схема электрических соединений дана в техническом описании "Коммуникационный модуль ECA 81".

Основные технические характеристики

Температура окружающей среды	$0-50^{\circ} \mathrm{C}$
Температура транспортировки и хранения	От - 40 до $+70^{\circ} \mathrm{C}$
Корпус	Для настенного или щитового монтажа
Тип датчика	Pt 1000 Ом/0 ${ }^{\circ} \mathrm{C}$
Класс защиты корпуса	IP 41 - DIN 40050
(¢-маркировка соответствия стандартам	EMC-директива 89/336/EEC, 92/31/EEC, 93/68/EEC, EN 50081-1 и EN 50082-1. Директива по низкому напряжению 73/23/EEC и 93/68/EEC

Общая схема
электрических соединений на ~230 B

Внимание!

Не допускается подача фазного напряжения питания из внешних схем на клеммы 3, 4, 6, 7 во избежание повреждения компонентов.

Напряжение питания	~ 230 В, $50 / 60$ Гц
Колебания напряжения	От ~ 207 до ~ 244 В (IEC 60038)
Потребляемая мощность	5 Вт
Нагрузка на релейных выходах	$4(2)$ А, ~ 230 В
Нагрузка на тиристорных выходах	$0,2 \mathrm{~A}, \sim 230 \mathrm{~B}$

Общая схема электрических соединений на ~24 В

Внимание!

Не допускается подача фазного напряжения питания из внешних схем на клеммы 3, 4, 6, 7 во избежание повреждения компонентов.

Напряжение питания	~ 24 В, 50/60 Гц
Колебания напряжения	От ~21,6 до ~26,4 В (IEC 60038)
Потребляемая мощность	5 Вт
Нагрузка на релейных выходах	$4(2)$ А, ~24 В
Нагрузка на тиристорных выходах	1 А, ~24 В

Габаритные размеры

При монтаже на щите (соединитель, кодовый номер 087B1148) толщина стенки А не должна превышать 3 мм.

При монтаже на стене (комплект, кодовый номер 087B1149) толщина стенки В не должна превышать 1 мм.

Техническое описание

Управляющая карта C14 для ECL Comfort 300

Описание и область применения

Управляющая карта C14 предназначена для обеспечения работы электронного регулятоpa ECL Comfort 300 в технологических схемах систем вентиляции, воздушного отопления или охлаждения, проиллюстрированных на нижеприведенных рисункамх. Карта С14, кроме функций регулирования, позволяет:

- включать и выключать установки в заданное время;
- защищать воздухонагреватель от замерзания по температуре обратного теплоносителя или температуре воздуха после калорифера путем открытия клапана, останова вентилятора и закрытия заслонки;
- осуществлять аварийный останов системы при пожаре или сигнале пожарного датчика;

- осуществлять прогрев воздухонагревателя перед пуском;
- менять режим регулирования при переходе температуры наружного воздуха через две заданные границы;
- дистанционное, ручное включение выключение системы
Карта позволяет осуществлять ручную настройку ряда параметров регулирования (см. таблицу на стр. 35).
В качестве температурных датчиков в схемах регулирования используются термометры сопротивления типа Pt 1000.
Регуляторы могут объединяться через шину "BUS" в единую систему с одним управляющим и несколькими подчиненными контроллерами.

Номенклатура и коды для оформления заказа

Тип карты	Язык описания карты	Кодовый номер
C 14	Русский	$\mathbf{0 8 7 B 4 8 3 7}$

Применение
 ECL Comfort 300
 с картой C14

1. Система с воздушно-отопительными агрегатами и регулированием постоянной температуры воздуха в помещении

Принцип регулирования

ПИ-регулирование температуры теплоносителя S_{3} и П-регулирование температуры воздуха в помещении S_{2}. Температура теплоносителя поддерживается на постоянном уровне с помощью клапана с электроприводом M_{1}. Вентиляторы P_{1} управляются с помощью реле R_{1}, а циркуляционный насос P_{2} - с помощью реле R_{2}.
2. Система вентиляции с регулированием постоянной температуры приточного воздуха

Принцип регулирования

ПИ-регулирование температуры приточного воздуха S_{3}. Температура поддерживается на постоянном уровне с помощью клапана с электроприводом M_{1} в контуре теплоснабжения воздухонагревателя. Вентиляторы P_{1} управляются с помощью реле R_{1}, а заслонка P_{2} - с помощью реле R_{2}.
3. Система вентиляции с регулированием постоянной температуры воздуха в помещении

Принцип регулирования

ПИ-регулирование температуры приточного воздуха S_{3} и П-регулирование температуры воздуха в помещении S_{2}. Температура воздуха поддерживается на постоянном уровне с помощью клапана с электроприводом M_{1} на теплоносителе. Вентиляторы P_{1} управляются с помощью реле R_{1}, а заслонка P_{2} - с помощью реле R_{2}.

4. Вентиляционная система

с рециркуляцией вытяжного воздуха

Принцип регулирования

ПИ-регулирование температуры приточного воздуха S_{3} и П-регулирование температуры воздуха в помещении $\left(S_{2}\right)$ с нейтральной зоной между временем функционирования рециркуляционной заслонки и клапана. Температура поддерживается на постоянном уровне последовательной работой заслонки, управляемой электроприводом M_{2}, и клапана на теплоносителе с электроприводом M_{1}. Вентиляторы P_{1} управляются с помощью реле R_{1}.

Применение ECL Comfort 300 с картой C14
(продолжение)

5. Вентиляционная установка с воздухонагревателем и воздухоохладителем

Принцип регулирования

ПИ-регулирование температуры приточного воздуха S_{3} и П-регулирование температуры воздуха в помещении S_{2} с нейтральной зоной между работой воздухонагревателя и воздухоохладителя. В зимний период температура поддерживается на постоянном уровне работой клапана с электроприводом M_{1}, установленного на воздухонагревателе.
В летний период температура поддерживается на постоянном уровне работой клапана с электроприводом M_{2}, установленного на воздухоохладителе. Вентиляторы P_{1} управляются с помощью реле R_{1}, а заслонка P_{2} с помощью реле R_{2}.
6. Вентиляционная система с утилизацией тепла вытяжного воздуха

Принцип регулирования

ПИ-регулирование температуры приточного воздуха S_{3} и П-регулирование температуры воздуха в помещении S_{2} с нейтральной зоной между работой воздухонагревателя и заслонок на теплоутилизаторе. Температура поддерживается на постоянном уровне последовательной работой клапана с электроприводом M_{1}, установленного на воздухонагревателе, и электропривода M_{2}, управляющего заслонками утилизационного теплообменника. Вентиляторы P_{1} управляются с помощью реле R_{1}.
7. Холодильные камеры с поддержанием постоянной температуры охлажденной воды

Принцип регулирования

ПИ-регулирование температуры охлажденной воды S_{3}. Температура охлажденной воды поддерживается на постоянном уровне с помощью клапана с электроприводом M_{1} Циркуляционный насос P_{1} управляется с помощью реле R_{1}.
8. Система с воздушно-охладительными агрегатами и поддержанием постоянной температуры воздуха в помещении

Принцип регулирования

ПИ-регулирование температуры охлажденной воды S_{3} и П-регулирование температуры воздуха в помещении S_{2}. Температура воздуха в помещении поддерживается на постоянном уровне клапаном с электроприводом M_{2}. Циркуляционный насос P_{2} управляется с помощью реле R_{2}, а вентиляторы P_{1} - с помощью реле R_{1}.

Электрические соединения
 ECL Comfort 300 c картой C14

Подключение силовых цепей

 на ~230 В (общая схема)

Клемма		Описание	Макс. нагрузка
1	L	Напряжение питания ~230 В (фаза)	
2	N	Напряжение питания ~230 В (нейтраль)	
3	M ${ }_{1}$	Электропривод (открытие)	0,2 A, 230 B
4	M_{1}	Электропривод (закрытие)	0,2 A, 230 B
5		Фаза ~230 В для M_{1}	
6	M_{2}	Электропривод (открытие)	0,2 A, 230 B
7	M_{2}	Электропривод (закрытие)	0,2 A, 230 B
8		Фаза ~230 В для M_{2}	
9	P_{1}	Насос/вентилятор	4(2) A, 230 B
10		Фаза ~230 В для R_{1}	
11	P_{2}	Насос /заслонка	4(2) A, 230 B
12		Фаза ~230 В для R_{2}	
13	P_{3}	По специальному заказу	4(2) A, 230 B
14		Фаза ~230 В для R_{3}	

Подключение силовых цепей на ~24 В (общая схема)

Клемма		Описание	Макс. нагрузка
1	L	Напряжение питания ~24 В (фаза)	
2	N	Напряжение питания ~24 В (нейтраль)	
3	M_{1}	Электропривод (открытие)	$1 \mathrm{~A}, 24 \mathrm{~B}$
4	M_{1}	Электропривод (закрытие)	$1 \mathrm{~A}, 24 \mathrm{~B}$
5		Фаза ~24 В для M_{1}	
6	M_{2}	Электропривод (открытие)	$1 \mathrm{~A}, 24 \mathrm{~B}$
7	M_{2}	Электропривод (закрытие)	1 A, 24 B
8		Фаза ~24 В для M_{2}	
9	K_{1}	Дополнительное реле насоса/ вентилятора	Обмотка на ~24 B, контакты на 4(2)А, ~230 B
10		Фаза ~24 В для R_{1}	
11	K_{2}	Дополнительное реле насоса / заслонки	$\begin{gathered} \text { Обмотка } \\ \text { на } \sim 24 \mathrm{~B}, \\ \text { контакты } \\ \text { на 4(2) A, } \sim 230 \mathrm{~B} \\ \hline \end{gathered}$
12		Фаза ~24 В для R_{2}	
13	K_{3}	Дополнительное реле для P_{3} (по специальному заказу)	Обмотка на ~24 B, контакты на 4(2) A, ~230 B
14		Фаза ~24 В для R_{3}	

Примечания.

1. На схемах показаны все возможные элементы систем вентиляции, отопления и охлаждения.
2. Поперечное сечение кабеля для питающего напряжения 0,75-1,5 мм².
3. В каждую винтовую клемму могут быть введены два кабеля сечением до 1,5 мм².
4. В клеммной панели ECL Comfort 300 необходимо установить перемычки между клеммами 1-5-

8-10-12-14 и между общей колодкой " N " и клеммой 2.
5. Указанная максимальная нагрузка: без скобок - активная; в скобках — индуктивная.
6. Материал кабелей - медь.

Электрические соединения

ECL Comfort 300
с картой C14
(продолжение)

Подключение датчиков

 (общая схема)

Клеммы	Описание	Тип датчика
15 и 16	Системная шина	
17 и 16	Датчик темпер. наружного воздуха $\mathrm{S}_{1} /$ пожарный датчик	ESMT
18 n 16	Датчик темпер. воздуха в помещении S_{2}	ESM-10
19 и 16	Датчик темпер. теплоносителя /воздуха в воздуховоде S_{3}	ESM-11, ESMB ESMC, ESMU
20 и 16	Датчик темпер. обратного теплоносителя S_{4}	ESMU, ESM-11, ESMC
21 n 16	Внешняя ручная коррекция S_{5} *	ECA 9010
22 n 16	Датчик защиты от замерзания S_{6} **	KP61

* Дистанционное переключение комфорт/пониженный.
** Контакты 1 и 4 KP61 (размыкание при аварии).

Примечания.

1. В клеммной панели $E C L$ Comfort 300 необходимо установить перемычки между общей колодкой и клеммой 16.
2. Минимальное поперечное сечение кабеля для присоединения датчика 0,4 мм².
3. Максимальная рекомендованная длина кабеля датчика или шины 100 м (суммарная длина кабелей более 100 м может исказить показания датчиков).
4. Материал кабелей - медь.

Основные настройки регулятора

Наименование	Диапазон настройки	Заводская настройка
Температура воздуха в воздуховоде или помещении, ${ }^{\circ} \mathrm{C}$	От -20 до 110	20
Ограничение макс. и мин. температуры регулируемой среды, ${ }^{\circ} \mathrm{C}$	От -20 до 110	Мин. 20, макс. 50
Нейтральная зона, ${ }^{\circ} \mathrm{C}$	От 0 до 9	$3{ }^{\circ} \mathrm{C}$
Зона пропорциональности, ${ }^{\circ} \mathrm{C}$	От 1 до 250	$80^{\circ} \mathrm{C}$
Время интегрирования, с	От 5 до 999	30 C
Постоянная времени клапана с электроприводом, с	От 5 до 250	35 C

Техническое описание

Управляющие карты C60, C62, L62 для ECL Comfort 300, 301

Описание и область применения

Внимание!

1. Карта C62 отличается от карты С60 тем, что поддерживает функции ограничения температуры возвращаемого теплоносителя для каждого из двух контуров по отдельности и функцию контроля комнатной температуры в одной точке.
2. Карта L62 отличается от карты С62 тем, что поддерживает 2 циркуляционных насоса в каждом отопительном контуре. При применении карты L62 используются схемы для С62 стем отличием, что одиночные насосы заменяются 2 насосами, включаемыми параллельно. Режим работы насосов: основной резервный с переключением по времени или при аварии. Также карта L62 не поддерживает датчик комнатной температуры $S_{2,}$, кход которого используется для ввода сигналов реле перепада давлений насосных групn.

Управляющие карты C60, C62, L62 предназначены для обеспечения работы электронных регуляторов ECL Comfort 300, 301 в двух технологических системах водяного отопления, проиллюстрированных на нижеприведенных рисунках. Регулятор с картой C60, C62 или L62 поддерживает температуру теплоносителя, поступающего в две обособленные системы отопления в зависимости от температуры наружного воздуха и в соответствии с установленным для каждой системы своим температурным графиком.
Регулятор, настроенный на работу с картой, кроме функций регулирования, позволяет:

- осуществлять регулирование с коррекцией по температуре воздуха в помещении (при установке комнатного датчика);
- обеспечивать недопустимость превышения заданного температурным графиком значения температуры теплоносителя, возвращаемого в теплосеть;
- программировать снижение температуры воздуха в помещении по часам суток и дням недели;
- производить форсированный натоп помещений после периода снижения температуры внутреннего воздуха;
- автоматически отключать системы отопления на летний период при переходе температуры наружного воздуха определенной границы;
- периодически включать электроприводы насосов и регулирующих клапанов во время летнего отключения систем отопления;
- защищать системы отопления от замораживания.
С помощью карты возможна настройка ряда параметров регулирования (см. таблицу на стр. 42).
В качестве температурных датчиков в схемах регулирования используются термометры сопротивления типа Pt 1000. Регуляторы могут объединяться через шину "BUS" в единую систему с одним датчиком наружного воздуха. Причем контроллер, к которому подключен датчик, является ведущим. С помощью шины "BUS" также возможно подключение к регулятору комнатной панели контроля и настройки температуры внутреннего воздуха типа ECA 60 или выносного блока дистанционного управления типа ECA 61.

Номенклатура и коды для оформления заказа

Тип карты	Язык описания карты	Кодовый номер
C60	Русский	$\mathbf{0 8 7 B 4 8 0 5}$
C62	Русский	$\mathbf{0 8 7 B 4 7 5 3}$
L 62	Русский	$\mathbf{0 8 7 B 4 8 8 7}$

Дополнительное оборудование для управления насосами

RT262	Датчик реле перепада давлений	017D002566
ECA 80	Релейный модуль	087B1150

Применение
ECL Comfort 300 скартой C60

1. Два параллельных контура отопления, независимо подключенных к тепловым сетям

2. Контур радиаторного отопления и параллельный контур обогрева пола при независимом подключении к тепловым сетям

Принцип регулирования

ПИ-регулирование температуры теплоносителя S_{3} и S_{5}, поступающего в системы отопления, в зависимости от температуры наружного воздуха S_{1}, с коррекцией по температуре внутреннего воздуха S_{2} и S_{6} и отслеживанием температуры теплоносителя S_{4}, возвращаемого на источник теплоты после двух контуров.
2. Два параллельных контура отопления при зависимом подключении к тепловым сетям

4. Местная отопительная система с котлом и двумя параллельно подключенными контурами отопления

Температура теплоносителя поддерживается с помощью клапанов с электроприводами M_{1} и M_{2} через тиристорные выходы. Циркуляционные насосы P_{1} и P_{2} управляются с помощью реле R_{1} и R_{2}.

Применение

 ECL Comfort 300 с картой C62
1. Две системы отопления с независимым

 подключением к тепловым сетям
3. Система отопления и параллельный контур обогрева пола при независимом подключении к тепловым сетям

2. Две системы отопления с зависимым подключением к тепловым сетям

Принцип регулирования

ПИ-регулирование температуры теплоносителя S_{3} и S_{5}, поступающего в системы отопления, в зависимости от температуры наружного воздуха S_{1}, с коррекцией по температуре внутреннего воздуха S_{2} и отслеживанием температуры теплоносителя S_{4} и S_{6}, возвращаемого на источник теплоты после каждого из двух контуров.
Температура теплоносителя поддерживается с помощью клапанов с электроприводами M_{1} и M_{2} через тиристорные выходы. Циркуляционные насосы P_{1} и P_{2} управляются с помощью реле R_{1} и R_{2}.

Электрические соединения
ECL Comfort 300
с картами C60, C62, L62

Подключение силовых цепей на ~230 B (общая схема)	Клемма		Описание	Макс. нагрузка
	1	L	Напряжение питания ~230 В (фаза)	
	2	N	Напряжение питания ~230 В (нейтраль)	
	3	M_{1}	Электропривод контура I (открытие)	0,2 A, 230 B
	4	M_{1}	Электропривод или термоэлектропривод ABN контура I (закрытие)	0,2 A, 230 B
	5		Фаза ~230 В для M_{1}	
	6	M_{2}	Электропривод контура II (открытие)	0,2 A, 230 B
	7	M_{2}	Электропривод или термоэлектропривод ABN контура II (закрытие)	0,2 A, 230 B
	8		Фаза ~230 В для M_{2}	
Схема включения насосов действительна только для C60, C62	9	P_{1}	Циркуляционный насос контура I	4(2)A, 230 B
	10		Фаза ~230 В для R_{1}	
	11	P_{2}	Циркуляционный насос контура II	4(2)A, 230 B
	12		Фаза ~230 В для R_{2}	

Примечания.

1. На схемах показаны не все возможные элементы систем.
2. Поперечное сечение кабеля для питающего напряжения - 0,75-1,5 мм².
3. В каждую винтовую клемму могут быть введены два кабеля сечением до 1,5 мм².
4. В клеммной панели ECL Comfort 300 необходимо установить перемычки между клеммами 1-5-

8-10-12 и между общей колодкой "N" и клеммой 2.
5. Перемычка в клеммной панели для ECL 301 устанавливается с учетом реальной насосной схемы.
6. Указанная максимальная нагрузка: без скобок - активная; в скобках — индуктивная.
7. Материал кабелей - медь.

Электрические соединения ECL Comfort 300
с картами C60, C62, L62
(продолжение)

Подключение датчиков (общая схема)

Клеммы	Описание	Тип датчика
15 и 16	Шина системного устройства	ESMT
17 и 16	Датчик темпер. наружного воздуха S_{1}	ESM-10
18 и 16	Датчик темпер. воздуха в помещении S_{2}	ESM-11, ESMB, ESMC,
19 и 16	Датчик темпер. теплоносителя в подающем трубопроводе S_{3} контура I	
20 и 16	Датчик темпер. теплоносителя S $_{4}$, возвращаемого в тепловую сеть после двух контуров	ESMU, ESM-11, ESMC
21 и 16	Датчик темпер. теплоносителя в подающем трубопроводе S_{5} контура II	ESMU, ESM-11, ESMC
22 и 16	Датчик температуры воздуха в помещении S_{6} для контура II	ESM-10

C62, L62

Клеммы	Описание	Тип датчика
15 и 16	Шина системного устройства	ESMT
17 и 16	Датчик темпер. наружного воздуха S $_{1}$	ESM-10
18 и 16^{*}	Датчик темпер. воздуха в помещении S_{2}	ESM-11, ESMB, ESMC, ESMU
19 и 16	Датчик темпер. теплоносителя в подающем трубопроводе S_{3} контура I	
20 и 16	Датчик темпер. теплоносителя S $_{4}$, возвращаемого в тепловую сеть,контур I	ESMU, ESM-11, ESMC
21 и 16	Датчик темпер. теплоносителя в подающем трубопроводе S_{5} контура II	ESMU, ESM-11, ESMC
22 и 16	Датчик температуры теплоносителя S $_{6}$, возвращаемого в тепловую сеть, контур II	ESMU, ESM-11, ESMC

* Для карты L62 датчик не используется.

Примечания.

1. В клеммной панели ECL Comfort 300 необходимо установить перемычки между общей колодкой и клеммой 16.
2. Минимальное поперечное сечение кабеля для присоединения датчика 0,4 мм².
3. Максимальная рекомендованная длина кабеля, датчика и шины 50 м (суммарная длина кабелей более 100 м может исказить показания датчиков).
4. Материал кабелей - медь.

Основные настройки

 регулятора| Наименование | Диапазон настройки | Заводская настройка |
| :---: | :---: | :---: |
| Наклон температурного графика | От 0,2 до 3,4 | 1,8 |
| Параллельное смещение температурного графика | От -9 до 9 | 0 |
| Температура летнего отключения, ${ }^{\circ} \mathrm{C}$ | От 10 до 30 | 18 |
| Макс. ограничение температуры теплоносителя, ${ }^{\circ} \mathrm{C}$ | От 10 до 110 | 90 |
| Мин. ограничение температуры теплоносителя, ${ }^{\circ} \mathrm{C}$ | От 10 до 110 | 40 |
| Ограничение температуры теплоносителя, возвращаемого в теплосеть, ${ }^{\circ} \mathrm{C}$ | От 10 до 110 | 40 |
| Нейтральная зона, ${ }^{\circ} \mathrm{C}$ | От 0 до 9 | 3 |
| Зона пропорциональности, ${ }^{\circ} \mathrm{C}$ | От 1 до 250 | 80 |
| Время интегрирования, с | От 5 до 999 | 30 |
| Постоянная времени клапана с электроприводом, с | От 5 до 250 | 35 |

Особенности применения карты L62

Технологические схемы, в которых применяет ся карта L62, полностью совпадают с таковыми для карты С62 с тем отличием, что карта L62 поддерживает работу сдвоенных насосов в каждом контуре.

В связи с этим карта обеспечивает следующие функции:

- автоматическое переключение с работающего насоса на резервный, периодически, в заданное время суток, один раз в 1-9 суток;
- автоматическое аварийное, по дискретному сигналу, при падении перепада давлений на одном из насосов, переключение на резервный насос;
- автоматические, с заданным периодом, попытки включения одного из насосов до получения заданного перепада давлений при аварии типа «сухой ход»;
- сигнализация аварии насоса контактом реле и на дисплее с определением вида аварии и аварийного контура;
- ручной сброс аварий;
- автоматическое возобновление работы системы после устранения причины аварии типа «сухой ход».

При этом карта L62 не контролирует комнатную температуру, и в ней не реализованы функции автонастройки и защиты привода контура ГВС.

Карта L62 работает с регулятором ECL 301. К каждой насосной группе из двух насосов параллельно подключается датчик-реле перепада давлений, который при отказе насоса фиксирует падение напора и замыкает контакт сигнализации аварии ($\mathrm{K}_{1}, \mathrm{~K}_{2}$). Указанные контакты подключаются к входу S_{2} через резисторы 1,3к (контур 1) и 1,0к (контур 2) согласно схеме.

Особенности применения

 карты L62(продолжение)

Подключение приводов и датчиков $\mathrm{S}_{1}, \mathrm{~S}_{3} \ldots \mathrm{~S}_{6}$ совпадает с подключением для карты C62.

При управлении мощными насосами следует делать взаимоблокировку насосов в каждой группе во избежание больших пиковых токов при включении регулятора. Допускается применять резисторы произвольного производителя с допуском не хуже $\pm 10 \%$.

При наступлении аварии экран регулятора начинает мигать. Мигание сбрасывается нажатием любой кнопки. Из пункта меню A желтой стороны карты двойным нажатием клавиши «//l॥» можно перейти в меню аварий, где отражено состояние аварий по каждому контуру. Сброс индикаторов аварии, в том числе и аварийного контакта, можно произвести нажатием клавиши «-».

Функция управления насосами поддерживается следующими пунктами сервисного меню :

- 142, TR. Время рестарта [Off; 1, 2... 99] (20). Период повторения (в минутах) попытки запустить в нормальном режиме один из насосов при авариии второго типа;
- 145, TP. Период автоматического перехода на резервный насос в формате (16,1) , где 16 - время суток, 1 - день переключения;
- 146,TST. Время стабилизации [1, 2... 99] (15) (секунд), за которое устанавливается гидравлический режим после включения насоса;
- 153, TCH. Время перехода [Off; 1, 2... 99] (5) (секунд) - интервал между выключением рабочего и включением резервного насосов.

Схема электрических подключений для управления насосными групnами

Структура комплекса, L62

Техническое описание
Управляющие карты C66, L66 для ECL Comfort 300, 301

Описание и область применения

Примечание.

Карты С66 и L66 отличаются тем, что карта С66 поддерживает технологическую схему с единственным циркуляционным насосом в каждом контуре. Карта L66 поддерживает работу пары циркулирующих насосов в каждом контуре.
Нижеприведенные схемы относятся к карте С66, хотя будут действительны для карты L66 с учетом вышесказанного.

Управляющие карты C66, L66 предназначены для обеспечения работы электронного регулятора ECL Comfort 300, 301 в технологических схемах систем водяного отопления и систем горячего водоснабжения (ГВС), проиллюстрированных на нижеприведенных рисунках. Регулятор с картами C66, L66 поддерживает температуру теплоносителя, поступающего в систему отопления в зависимости от температуры наружного воздуха в соответствии с установленным температурным графиком, а также постоянную температуру горячей воды в системе ГВС.
Регулятор, настроенный на работу с картой C66 или L66, кроме функций регулирования, позволяет:

- осуществлять управление системой отопления с коррекцией по температуре воздуха в помещении (при установке комнатного датчика);
- обеспечивать недопустимое превышение заданного температурным графиком значения температуры теплоносителя, возвращаемого в теплосеть после контура отопления, и постоянного значения после контура гВС;
программировать снижение температуры воздуха в помещении и горячей воды в системе ГВС по часам суток и дням недели;
- производить форсированный натоп помещений после периода снижения температуры внутреннего воздуха;
- автоматически отключать систему отопления на летний период при переходе температуры наружного воздуха определенной границы;
- периодически включать электроприводы насоса и регулирующего клапана во время летнего отключения систем отопления;
- защищать систему отопления от замораживания.
С помощью карт C66, L66 возможна настройка ряда параметров регулирования (см. таблицу на стр. 48) и выполнение самонастройки регулирования системы ГВС. В качестве температурных датчиков в схемах регулирования используются термометры сопротивления типа Pt 1000. Регуляторы могут объединяться через шину "BUS" в единую систему с одним датчиком наружного воздуха. При этом регулятор, к которому подключен датчик, является ведущим. С помощью шины "BUS" также возможно подключение к регулятору комнатной панели контроля и настройки температуры внутреннего воздуха типа ECA 60 или выносного блока дистанционного управления типа ECA 61.

Номенклатура и коды для оформления заказа

Тип карты	Язык описания карты	Кодовый номер
C66	Русский	$\mathbf{0 8 7 B 4 8 0 6}$
C66	Английский	$\mathbf{0 8 7 B 4 7 5 7}$
L 66	Русский	$\mathbf{0 8 7 B 4 8 7 1}$

Дополнительное оборудо- вание контроля насосов	Описание карты	Кодовый номер
RT262A	Датчик-реле перепада давлений	$\mathbf{0 1 7 D 0 0 2 5 6 6}$
ECA 80	Релейный модуль	$\mathbf{0 8 7 B 1 1 5 0}$

Применение

ECL Comfort 300, 301
с картами C66, L66

1. Система отопления при независимом присоединении к тепловым сетям и система ГВС со скоростным водонагревателем

Принцип регулирования

ПИ-регулирование температуры теплоносителя S_{3}, поступающего в систему отопления, в зависимости от температуры наружного воздуха S_{1} с коррекцией по температуре внутреннего воздуха S_{2} с отслеживанием по температурному графику температуры теплоносителя S_{4}, возвращаемого на источник теплоты. ПИ-регулирование температуры горячей воды S_{5} с отслеживанием температуры теплоносителя S_{6}, возвращаемого на источник теплоты.
2. Система отопления при зависимом присоединении к тепловым сетям и система ГВС со скоростным водонагревателем

Температура теплоносителя и горячей воды поддерживается с помощью клапанов с электроприводами M_{1} и M_{2} через тиристорные выходы. Циркуляционные насосы P_{1} и P_{3} управляются с помощью реле R_{1} и R_{3}.

Электрические соединения
ECL Comfort 300, 301
с картами C66, L66

Подключение силовых цепей на ~24 B и 230 В (общая схема)

Подключение насосов; действительно только для С66

Клемма		Описание	Макс. нагрузка
1	L	Напряжение питания ~24 В (фаза)	
2	N	Напряжение питания ~24 В (нейтраль)	
3	M_{1}	Электропривод контура отопления (открытие)	1 A, 24 B
4	M_{1}	Электропривод или термоэлектропривод ABN контура отопления (закрытие)	1 A, 24 B
5		Фаза ~24 В для M_{2}	
6	M_{2}	Электропривод контура ГВС (открытие)	1 A, 24 B
7	M_{2}	Электропривод контура ГВС (закрытие)	1 A, 24 B
8		Фаза ~24 В для M_{2}	
9	K_{1}	Дополнительное реле насоса P_{1} контура отопления	Обмотка на ~24 B, контакты на 4(2) A, ~230 B
10		Фаза ~24 В для реле насоса R_{1}	
13	P_{3}	Дополнительное реле насоса P_{3} контура ГВС	Обмотка на ~24 B, контакты на 4(2) A, ~230 B
14		Фаза ~24 В для реле насоса R_{3}	

Примечания.

1. На схемах показаны все возможные элементы систем вентиляции, отопления и охлаждения.
2. Поперечное сечение кабеля для питающего напряжения 0,75-1,5 мм².
3. В каждую винтовую клемму могут быть введены два кабеля сечением до 1,5 мм².
4. В клеммной панели ECL Comfort 300 необходимо установить перемычки между клеммами 1-5-8-10-14 и между общей колодкой " N " и клеммой 2.
5. Указанная максимальная нагрузка: без скобок - активная; в скобках — индуктивная.
6. Материал кабелей — медь.

Электрические соединения

ECL Comfort 300, 301
с картами C66, L66
(продолжение)

Подключение датчиков

(общая схема)

Клеммы	Описание	Тип датчика
15 и 16	Шина системного устройства	ESMT
17 и 16	Датчик темпер. наружного воздуха S_{1}	ESM-10
18 и 16^{*}	Датчик темпер. воздуха в помещении S_{2}	ESM-11, ESMB, ESMC, ESMU
19 и 16	Датчик темпер. теплоносителя в подающем трубопроводе S $_{3}$ контура I	ESMU, ESM-11, ESMC
20 и 16	Датчик темпер. теплоносителя S $_{4}$ возвращаемого в тепловую сеть после двух контуров	ESMU, ESM-11, ESMC
21 и 16	Датчик темпер. теплоносителя в подающем трубопроводе S_{5} контура II	ESM-10
22 и 16	Датчик температуры воздуха в помещении (S) для контура ІІ	

* Действительно только для карты С66.

Примечания.

1. В клеммной панели ECL Comfort необходимо установить перемычки между общей колодкой и клеммой 16.
2. Минимальное поперечное сечение кабеля для присоединения датчика 0,4 мм².
3. Максимальная рекомендованная длина кабеля датчика или шины 100 м (длина кабелей более 125 м может исказить показания датчиков).
4. Материал кабелей - медь.

Основные настройки

 регулятора| Наименование | Диапазон настройки | Заводская
 настройка |
| :--- | :---: | :---: |
| Наклон температурного графика | От 0,2 до 3,4 | 1,8 |
| Параллельное смещение температурного графика | От -9 до 9 | 0 |
| Температура летнего отключения, ${ }^{\circ}$ C | От 10 до 30 | 18 |
| Макс. ограничение температуры теплоносителя, ${ }^{\circ} \mathrm{C}$ | От 10 до 110 | 90 |
| Мин. ограничение температуры теплоносителя, ${ }^{\circ} \mathrm{C}$ | От 10 до 110 | 40 |
| Ограничение температуры теплоносителя, возвращаемого
 в теплосеть, ${ }^{\circ} \mathrm{C}$ | От 10 до 110 | 40 |
| Нейтральная зона, ${ }^{\circ} \mathrm{C}$ | От 0 до 9 | 3 |
| Зона пропорциональности, ${ }^{\circ} \mathrm{C}$ | От 1 до 250 | 80 |
| Время интегрирования, с | От 5 до 999 | 30 |
| Постоянная времени клапана с электроприводом, с | От 5 до 250 | 35 |

Особенности применения карты L66

Технологические схемы, в которых применяется карта L66, полностью совпадают с таковыми для карты С66 с тем лишь отличием, что карта L66 поддерживает работу сдвоенных насосов в каждом контуре.

В связи с этим карта обеспечивает следующие функции:

- автоматическое переключение с работающего насоса на резервный периодически в заданное время суток, один раз в 1-9 суток;
- автоматическое аварийное, по дискретному сигналу, при падении перепада давлений на одном из насосов, переключение на резервный насос;
- автоматические, с заданным периодом, попытки включения одного из насосов до получения заданного перепада давлений при аварии типа «сухой ход»;
- сигнализация аварии насоса контактом реле и на дисплее с определением вида аварии и аварийного контура;
- ручной сброс аварий;
- автоматическое возобновление работы системы после устранения причины аварии типа «сухой ход».

При этом карта L66 не контролирует комнатную температуру, и в ней не реализованы функции автонастройки и защиты привода контура ГВС.

Карта L66 работает с регулятором ECL 301. К каждой насосной группе из двух насосов параллельно подключается датчик-реле перепада давлений, который при отказе насоса фиксирует падение напора и замыкает контакт сигнализации аварии.
Указанные контакты подключаются к входу S_{2} через резисторы 1,3к и 1,0к согласно схеме. Для управления насосной группой ГВС применяется релейный модуль ЕСА 80.

Особенности применения карты L66 (продолжение)

При управлении мощными насосами следует делать взаимоблокировку насосов в каждой группе во избежание больших пиковых токов при включении регулятора. Допускается применять резисторы произвольного производителя с допуском не $х у ж е ~ \pm 10 \%$.

При наступлении аварии экран регулятора начинает мигать. Мигание сбрасывается нажатием любой кнопки. Из пункта меню A желтой стороны карты двойным нажатием клавиши «//l॥» можно перейти в меню аварий, где отражено состояние аварий по каждому контуру. Сброс индикаторов аварии, в том числе и аварийного контакта, можно произвести нажатием клавиши «»».

Функция управления насосами поддерживается следующими пунктами сервисного меню :

- 142,TR. Время рестарта [Off; 1, 2... 99] (20). Период повторения (в минутах) попытки запустить в нормальном режиме один из насосов при авариии второго типа;
- 145, TP. Период автоматического перехода на резервный насос в формате $(16,1)$, где 16 - время суток, 1 - день переключения;
- 146,TST. Время стабилизации [1, 2... 99] (15) (секунд), за которое устанавливается гидравлический режим после включения насоса;
- 153, TCH. Время перехода [Off; 1, 2... 99] (5) (секунд) - интервал между выключением рабочего и включением резервного насосов.

Электрическая схема подключений для управления насосными групnами

Структура комплекса, L66

Техническое описание

Управляющая карта C75 для каскадного управления 4 горелками в трехконтурной системе отопления и ГВС

Описание и область применения

Карта C75 работает с регулятором ECL Comfort 300 и предназначена для контроля автономных систем теплоснабжения зданий. Она поддерживает работу двух контуров отопления и одного контура ГВС с накопительным баком. Регулирование до 4 горелок источника тепла производится в каскадном режиме. Регулятор должен быть укомплектован релейным модулем ECA 80 и взаимодействует со следующим оборудованием:

датчиками температуры наружного воздуха и в помещении, подачи в первом и втором отопительных контурах и баке-аккумуляторе, обратной отопительных контуров;

- клапаном регулировки температуры в контуре напольного отопления;
- циркуляционными насосами рабочих контуров;
- до четырех горелок.

Номенклатура и коды для оформления заказа

Тип карты	Язык описания карты	Кодовый номер
C 75	Русский	$\mathbf{0 8 7 B 4 8 2 5}$

Применение

ECL Comfort 300
с картой C75

1. Радиаторная система с двумя горелками

и контуром ГВС

Контур	Строка сервисного меню	Рекомендуемое значение	Описание
Котла	51	$\begin{gathered} \text { OFF } \\ \text { (Выкл.) } \end{gathered}$	Температура бака ГВС регулируется командами на включениевыключение насоса P_{3} (состояние OFF поддерживает приоритет ГВС над контуром отопления I)
Смесительный	52	$\begin{gathered} \hline \text { ON } \\ \text { (Вкл.) } \end{gathered}$	Клапан смесительного контура закрывается при разборе горячей воды (приоритет ГВС над контуром II)
Котла	53	OFF	Уставка температуры контура котла S_{5} принимает значение в соответствии с заданной температурой горячей воды S_{6} при ее разборе (состояние OFF поддерживает приоритет ГВС над контуром отопления I)
Котла	72	0	Последовательная работа горелок с автоматическим переключением последовательности
Котла	76	2	Число горелок (ступеней)
Котла	88	$\begin{gathered} \text { OFF } \\ \text { (Выкл.) } \end{gathered}$	Реле R_{1} отключает насос P_{1} циркуляции контура I отопления при разборе горячей воды (приоритет ГВС над контуром отопления I)

Применение

ECL Comfort 300
с картой C75
(продолжение)

2. Система, включающая 2-4 горелки с двумя контурами отопления и контуром ГВС (вариант 1)

Контур	Строка сервисного меню	Рекомендуемое значение	Описание
Котла	51	OFF (Выкл.)	Температура бака ГВС регулируется командами на включениевыключение насоса P_{3} (состояние OFF поддерживает приоритет ГВС над контуром отопления I)
Смесительный	52	ON (Вкл.)	Клапан смесительного контура закрывается при разборе горячей воды (приоритет ГВС над контуром II)
Котла	53	OFF (Выкл.)	Уставка температуры контура котла S_{5} принимает значение в соответствии с заданной температурой горячей воды S_{6} при ее разборе (состояние OFF поддерживает приоритет ГВС над контуром отопления I)
Котла	72	0	Последовательная работа горелок с автоматическим переключением последовательности
Котла	76	3	Число горелок (ступеней)
Котла	88	OFF (Выкл.)	Реле R_{1} отключает насос P_{1} циркуляции отопительного контура котла при разборе горячей воды (приоритет ГВС над контуром отопления I)

Применение

ECL Comfort 300
с картой C75
(продолжение)

2. Система, включающая 2-4 горелки с двумя контурами отопления и контуром ГВС (вариант 2)

Контур	$\begin{array}{c}\text { Строка } \\ \text { сервисного } \\ \text { меню }\end{array}$	$\begin{array}{c}\text { Рекомен- } \\ \text { дуемое } \\ \text { значение }\end{array}$	Описание
Котла	51	$\begin{array}{c}\text { ОN } \\ \text { (Вкл.) }\end{array}$	$\begin{array}{l}\text { Температура подогревателя ГВС S }\end{array}$ регулируется за счет
перенаправления горячей воды трехходовым клапаном от			
одного котла			

Применение

ECL Comfort 300
с картой C75
(продолжение)

2. Система, включающая 2-4 горелки с двумя контурами

 отопления и контуром ГВС (вариант 3)

Контур	Строка сервисного меню	Рекомендуемое значение	Описание
Котла	51	OFF (Выкл.)	Температура подогревателя ГВС регулируется командами на включение-выключение насоса P_{3} (состояние OFF поддерживает приоритет ГВС над контуром отопления I)
Смесительный	52	ON (Вкл.)	Клапан смесительного контура закрывается при разборе горячей воды (приоритет ГВС над контуром II)
Котла	53	$\begin{gathered} \text { OFF } \\ \text { (Выкл.) } \end{gathered}$	Уставка температуры контура котла S_{5} принимает значение в соответствии с заданной температурой горячей воды S_{6} при ее разборе (состояние OFF поддерживает приоритет ГВС над контуром отопления I)
Котла	72	0	Последовательная работа горелок с автоматическим переключением последовательности
Котла	76	4	Число горелок (ступеней)
Котла	88	OFF (Выкл.)	Реле R_{1} отключает насос P_{1} циркуляции отопительного контура котла при разборе горячей воды (приоритет ГВС над контуром отопления I)

Электрические соединения
ECL Comfort 300
с картой C75
(силовые цепи)

Схема с 2 горелками

Схема с 3-4 горелками

Примечание.
При подключении управляемого оборудования необходимо руководствоваться следующими правилами:

- к зажиму 9 подключается насос P_{1} или P_{2} в зависимости от установки в строке 88 сервисного меню. Задание контура, насосом которого управляет этот выход.
- кзажиму 25 подключается горелка ВІІІ при общем числе горелок более двух.
- кзажиму 25 подключается насос P_{2} при числе горелок не более двух.
- к зажиму 28 подключается горелка BIV при общем числе горелок более трех.
- кзажиму 28 подключается насос P3 (зарядный насос бака ГВС) при общем числе горелок, равном трем.
- пунктиры на схеме обозначают возможные варианты. Этим можно манипулировать, если учесть, что максимальный ток на зажиме 4 не более 0,2 А, а на зажиме 28 - 2 А при индуктивной нагрузке.

Пример 1
Пример 2
2 горелки + насос котельного контура + насос смесительного контура + зарядный насос ГВС

Клемма	Оборудование	Примечание
11	Bl	
13	BII	
9	P_{1}	Строка 88 - OFF
	P_{1} не управляетСя	СТрока 88 - ON
9	P_{2}	СТрока 88 - ON
25	P_{2}	
4,28	P_{3}	

Пример 3
4 горелки + насос котельного контура + насос смесительного контура + зарядный насос ГВС

Клемма	Оборудование	Примечание
11	BI	
13	BII	
25	BW	
28	BIV	
9	P_{1}	Строка 88 - ОFF
	P_{1} не управляется	Строка 88 -ON
9	P_{2}	Строка 88 - ОN
	P_{2} не управляется	
4,28	P_{3}	

3 горелки + насос котельного контура + насос смесительного контура + зарядный насос ГВС

Клемма	Оборудование	Примечание
11	BI	
13	BII	
25	$\mathrm{BШ}$	
9	P_{1}	Строка 88 - OFF
	P_{1} не управляется	Строка 88 - ОN
9	P_{2}	Строка 88 - ОN
25	P_{2}	
4,28	P_{3}	

Техническое описание

Карта А00 - расширение системы каскадного управления горелками

Описание	Карта A00 применяется совместно с регуля-
и область применения	тором ECL Comfort 300, управляемым картой
	С75, для увеличения числа управляемых
	горелок до 8.

Номенклатура и коды для оформления заказа

Тип карты	Язык описания	Кодовый номер
А00	Английский	087B4962

Применение карты A00

На рисунке показана базовая схема расширения системы управления горелками. Имеется возможность по шине «BUS» (контакты 15 и 16 регулятора ECL 300) к ведущему регулятору $\mathrm{ECL} 300+$ C75 подключить до 2 дополнитель-

ных, ведомых регуляторов ECL 300 + A00. При этом релейные выходы регуляторов расширения используются для подключения дополнительных горелок и оборудования.

Применение карты А00 (продолжение)

Карта А00 имеет единственный сервисный параметр, задаваемый пользователем, находящийся в строке 85 и принимающий значение в диапазоне 0 ... 4.
0 - нет функции регулятора.
1 - реле 5, 6, 7.
2 - реле 8, 9, 10.
3 - реле 3, 4, 5.
4 - реле 6, 7, 8.
Число горелок задается в строке 76 ведущего и максимально равно 8. Если число реле больше, чем число горелок, первое свободное реле в конце ряда (справа) назначается насосу P_{2}, следующее - насосу P_{3}.

С картой А00 работает регулятор версии не младше 1.06

На желтой стороне карты в строках А и С показано состояние реле в виде символов насосов. В строке В можно производить ручную установку реле в ручном режиме.

В таблице показаны установки строк для разных вариантов.

Оборудование			ECA 80	Ведущий Строка 76	Ведомый 1 Строка 85	Ведомый 2 Строка 85
Горелки	P_{2}	P_{3}				
3	-	-	1	3	-	-
3	1	-	1	3	-	-
3	1	1	-	3	3	-
4	-	-	1	4	-	-
4	1	-	-	4	3	-
4	1	1	1	4	1	-
5	-	-	-	5	3	-
5	1	-	1	5	1	-
5	1	1	1	5	1	-
6	-	-	1	6	1	-
6	1	-	1	6	1	-
6	1	1	-	6	3	4
7	-	-	1	7	3	-
7	1	-	-	7	3	4
7	1	1	1	7	1	2
8	-	-	-	8	3	4
8	1	-	1	8	1	2
8	1	1	1	8	1	2

Регуляторы температуры ECL Comfort 300, 301
 с импульсными входами

Описание и область применения

Регуляторы ECL 300, 301 комплектуются модулем ECA 88, который обеспечивает два канала ввода импульсных сигналов (по одному на каждый контур управления регулятора). Эти входные каналы предназначены для приема импульсных сигналов от тепловычислителей или расходомеров.

Прием данных о расходе или энергии по сетевым входам ECL Comfort при наличии модуля ECA 88 осуществляться не может.

Принцип действия

При установленном модуле ECA 88 регулятор может принимать импульсные сигналы по двум дополнительным входам, соответствующим первому и второму контурам.
Сигналы, принятые по каждому каналу, перечитываются в текущие значения расхода или энергии по каждому каналу и затем сравниваются с установленными для каждого канала уровнями ограничения. При превышении текущим расходом или энергией установленного уровня ограничения в данном контуре регулирования происходит снижение задания на регулируемую температуру, что приводит к снижению соответствующего потребления до допустимого уровня.
Функция работает с прикладными картами, поддерживающими контур отопления и/или ГВС. Уровень ограничения для контура отопления делается зависимым от наружной температуры. Уровень ограничения контура ГВС постоянен и не зависит от наружной температуры.

Необходимые коэффициенты пересчета, а также динамические и статические параметры настройки режима ограничения задаются через установки ряда параметров сервисного меню регулятора. Диапазоны настроек позволяют правильно представлять данные о расходе или энергии, снимаемые с теплосчетчика любого типоразмера.
С помощью перемычек на плате модуля можно сделать каждый вход пассивным (запитка от источника импульсов) или активным (запитка входной цепи от внутреннего источника питания модуля 5 В или 24 В через резистор). Максимальная частота входного сигнала 200 Гц.

Совместимость

Принадлежности ECL

ECA 80	ECA 81*	ECA 82*	ECA 84*	ECA 86	ECA 87
+	+	+	+	+	+

* Только для модуля В.

Функция ограничения доступна для карт C и L версии не ниже 1.08.

Основные технические характеристики модуля ECA88

Температура транспортировки и хранения, ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Температура окружающей среды, ${ }^{\circ} \mathrm{C}$	$0 \ldots+50$
Монтаж	Заводской
Кабель, мм	Медная экранированная пара $2 \times 0,4$
Длина кабеля, м	<50 (общая < 120)
Время обновления, с	$30-1200$
Частота импульсов, Гц	$0-200$
Размах импульса, В	$>3-5$
Длительность импульса, мс	>1
Питание цепи	5 В (по умолчанию), или 24 B, или пассивный вход

Номенклатура и коды для оформления заказа

Тип	Наименование	Кодовый номер
ECL 300	ECL Comfort 300 с импульсными входами, модулем ECA 88	$\mathbf{0 8 7 B 1 1 3 1}$
ECL 301	ECL Comfort 301 с импульсными входами, модулем ECA 88	$\mathbf{0 8 7 B 1 8 3 5}$

Соединение

Разместить разъем, как показано

Схема электрических соединений

Импульсы могут сниматься как с выхода тепловычислителя, так и расходомера.

Техническое описание

Карта C67 для управления трехконтурной отопительной системой

Описание и область применения

Карта С67 работает с регулятором
ECL Comfort 300 и применяется для управления контурами напольного отопления, радиаторного отопления и горячего водоснабжения с баком-аккумулятором в зданиях. К регулятору подключаются до шести датчиков температуры, два регулирующих клапана с приводами с трехпозиционным управлением и три циркуляционных насоса.

Регулирование отопительных контуров ведется по ПИ-закону, по погодозависимому температурному графику; регулирование контура ГВС - по позиционному закону (Вкл./Выкл.) с контролем температуры в верхней и нижней точках бака. Возможна корректировка режимов отопительных контуров по температуре возвращаемого теплоносителя.

Номенклатура и коды для оформления заказа

Тип карты	Язык описания карты	Кодовый номер
C67	Английский	$\mathbf{0 8 7 B 4 8 2 0}$

Варианты применения peгулятора ECL Comfort 300 с картой C67

Электрические подключения регулятора
 ECL Comfort 300 с картой C67

Примечание.
Сечение проводников для установки в клемму 0,4-1,5 мм².

Примечания.

1. Сечение проводников для установки в клемму $0,4-1,5$ мм²2.
2. Суммарная длина всех кабелей к датчикам, включая системную шину, 125 м. При большей длине возрастает вероятность воздействия электромагнитных помех на работу системы.
3. Комнатная панель подключается к клеммам контроллера 15 и 16, от которых она получает питание и сигналы управления.

Базовые настройки регулятора

Наклон и параллельное смещение температурного графика для отопления
Макс. и мин. ограничения температуры теплоносителя
Влияние температуры возвращаемого теплоносителя
Параметры настройки ПИ-регуляторов и позиционного регулятора
Задание температуры отопления
Параметры регулирования ГВС

Техническое описание

Карта L10 для управления системами обогрева открытых поверхностей

Описание
и область применения

Карта L10 работает в комплекте с регулятором ECL Comfort 301 и предназначена для работы с установками для обогрева открытых поверхностей от снега и льда в зимнее время.
Регулятор в рамках одного контура регулирования поддерживает:

- работу клапана, регулирующего температуру подаваемого теплоносителя в контур обогрева;
- работу циркуляционного насоса в контуре обогрева;
- индикатор активности обогрева;
- датчик наружной температуры;
- датчики температуры подаваемого и возвращаемого теплоносителя контура обогрева;
- датчик температуры поверхности;
- сигнал системы обнаружения снега или льда.

Номенклатура и коды для оформления заказа

Тип карты	Язык описания карты	Кодовый номер
L 10	Английский	$\mathbf{0 8 7 B 4 8 7 4}$

Применение регулятора
ECL Comfort 301
с картой L10

1. Контроль температуры поверхности по принципу слежения за диапазонами наружных температур

2. Контроль температуры поверхности по принципу слежения за диапазонами наружных температур и защитой водоподогревателя от переохлаждения

Применение регулятора
ECL Comfort 301
с картой L10
(продолжение)
3. Контроль температуры поверхности по принципу слежения за диапазонами наружных температур и температурой поверхности

4. Контроль температуры поверхности по принципу слежения за диапазонами наружных температур с сигнализацией наличия снега или льда

Принцип регулирования

Принцип работы состоит в погодозависимом регулировании температуры теплоносителя, подаваемого в контур обогрева. При этом выделяют три диапазона значений наружных температур, каждому из которых соответствует свой режим работы регулятора (см. таблицу настроек на стр. 66).
При наружной температуре выше максимальной заданной регулятор поддерживает температуру подаваемого теплоносителя на уровне $10^{\circ} \mathrm{C}$ при остановленном циркуляционном насосе. Этот диапазон соответствует условиям оттепели.
При наружной температуре между максимальной наружной и минимальной работает циркуляционный насос, и регулятор находится в режиме поддержания максимальной температуры теплоносителя. В этом диапазоне температур предполагается, что выпадение осадков наиболее вероятно. Это диапазон умеренного холода.
При наружной температуре ниже минимальной заданной циркуляционный насос работает, и регулятор поддерживает минимальную температуру теплоносителя. Предполагается, что при температуре ниже минимальной выпадение осадков маловероятно. Это диапазон сильных холодов.
Значения максимальной и минимальной температуры наружного воздуха, максимальной и минимальной теплоносителя задаются в сервисном меню.
В минимальной конфигурации необходимо обеспечить, по крайней мере, наличие датчика температуры подаваемого теплоносителя.

Можно корректировать температуру теплоносителя по показаниям датчика температуры поверхности, что снижает электропотребление когда поверхность высыхает и в безветренную погоду. В качестве датчика температуры поверхности рекомендуется использовать универсальный датчик типа AKS 21M с расширенным температурным диапазоном.
При обогреве больших площадей в целях усреднения показаний можно использовать четыре датчика температуры, размещенных в разных точках и электрически соединенных по мостовой схеме. При этом градуировка такой схемы соответствует Pt 1000.
Имеется возможность ограничивать температуру возвращаемого на источник теплоносителя как сверху, так и снизу на фиксированном уровне.
Если используется система обнаружения снега или льда, которая дает сигнал их присутствии, насос включен и регулятор поддерживает температуру, равную минимальной температуре подачи. При отсутствии такого сигнала поддерживается температура на уровне $10^{\circ} \mathrm{C}$.
По исчезновении сигнала от системы обнаружения снега или льда активный обогрев продолжает работать в течение 12 часов.

Электрические соединения регулятора
 ECL Comfort 301
 с картой L10

Клеммы	Назначение	Макс. нагрузка
1	Фаза 230 В, 50 Гц	
2	Нейтраль	
3	Привод открыть	0,2 A, 220 B
4	Привод закрыть	0,2 A, 220 B
5	Питание привода	
9	Циркуляционный насос	$4(2) \mathrm{A}, 220 \mathrm{~B}$
10	Питание насоса	
11	Сигнал активности системы	$4(2)$ A, 220 B
12	Питание сигнализации	

Примечания.

1. Сечение проводников для установки в клемму $0,4-1,5$ мм²2 (2 шт. в одну клемму).
2. Не допускается подавать на клеммы $3,4,6,7$ фазное напряжение 220 В из внешних схем.

Клеммы	Назначение	Рекомендовано
15,16	Системная шина	
17,16	$\mathrm{~S}_{1}$, датчик наружной температуры	ESMT
19,16	$\mathrm{~S}_{3}$, датчик температуры подаваемого	
теплоносителя	ESM-11, ESMC, ESMU	
20,16	$\mathrm{~S}_{4}$, датчик температуры поверхности	AKS21M
21,16	$\mathrm{~S}_{5}$, контакт системы обнаружения снега или льда	Devireg 850* или ручной
22,16	$\mathrm{~S}_{6}$, датчик температуры возвращаемого	
теплоносителя	ESM-11, ESMC, ESMU	

* www.devi.ru

Примечания.

1. Сечение проводников для установки в клемму $0,4-1,5$ мм². 2.
2. Суммарная рекомендованная длина всех кабелей к датчикам, включая системную шину, не более100 м. При большей
длине возрастает вероятность воздействия электромагнитных помех на работу системы.

Мостовая схема соединения четырех датчиков температуры фирмы Danfoss позволяет усреднить температуру поверхности.

Специфические настройки регулятора

Контур	Пункт сервисного меню	Описание	Обозначение	Диапазон настроек
1	2	Максимальная и минимальная температура подаваемого теплоносителя	$\mathrm{T}_{\text {под. макс }}$ $\mathrm{T}_{\text {под. мин }}$	$10 \ldots 110^{\circ} \mathrm{C}$
1	60	Верхний предел температуры поверхности	$\mathrm{T}_{\text {пов. макс }}$	$-30 \ldots 15^{\circ} \mathrm{C}$
1	64	Нижний предел температуры поверхности	$\mathrm{T}_{\text {пов.мин }}$	$-30 \ldots 15^{\circ} \mathrm{C}$
1	140	Детектор снега или льда		On/Оff (Вкл./Выкл.)
1	160	Максимальная наружная температура переключения	$\mathrm{T}_{\text {нар. макс }}$	$-30 \ldots 15^{\circ} \mathrm{C}$
1	Минимальная наружная температура переключения	$\mathrm{T}_{\text {нар. мин }}$	$-30 \ldots 15^{\circ} \mathrm{C}$	

Техническое описание

Карта L32 для управления комбинированной системой напольного отопления или охлаждения

Описание и область применения

Карта L32 работает с регулятором
ECL Comfort 301 и применяется для поддержания комфортных условий преимущественно в закрытых помещениях путем регулирования теплоносителя, подаваемого в системы напольного или потолочного отопления. Система в максимальной конфигурации на базе этой карты включает в себя регулятор ECL Comfort 301, блок дистанционного управления ECA 61, 63, которая содержит датчик комнатной температуры и влажности (только ECA 63), модуль дополнительных релейных выходов ЕСА 80. В зависимости от наружной температуры, регулятор обеспечивает питание системы от источника тепло- или холодоснабжения и может взаимодействовать со следующим внешним оборудованием:

- датчиком наружной температуры;

датчиком температуры теплоносителя *;

- датчиком комнатной температуры (может бытьвстроен в ЕСА 63);
- датчиком температуры поверхности пола;
- датчиком влажности воздуха в помещении;
- регулирующим клапаном с приводом*;
- отсечными клапанами источников теплоили холодоносителя;
- циркуляционным насосом;
- воздухоосушительной установкой;
- приемниками дискретных сигналов о рабочем контуре (обогрев или охлаждение), peжиме (комфорт или эконом), дневном плане;
- ручными выключателями управления дневным планом и циркуляционным насосом.
* Минимально необходимые компоненты.

Тип карты	Язык описания карты	Кодовый номер
L 32	Английский	$\mathbf{0 8 7 \mathrm { B } 4 8 5 4}$

Применение

ECL Comfort 301
с картой L32

1. Отопление или охлаждение с учетом точ-

 ки росы и температуры поверхности
3. Отопление или охлаждение независимо от точки росы и температуры поверхности

2. Погодозависимое отопление. Возможно подключение датчиков температуры в помещении и поверхности

Принцип регулирования

Задача состоит в том, чтобы поддерживать в помещении комфортные условия. Карта обеспечивает изменение температуры подаваемого в систему теплоносителя в зависимости от температуры наружного воздуха. Чем холоднее на улице, тем температура теплоносителя выше. С повышением температуры наружного воздуха надобность в отоплении отпадает, и в определенный момент включается подача холодоносителя. При этом включается холодильная машина. В режиме охлаждения делается учет относительной влажности с целью избежания конденсации влаги на поверхности пола.

Имеется возможность реализовать специальную программу для первоначальной сушки свежеизготовленных бетонных полов и тротуаров. Эта программа обеспечивает поддержание температуры полов на уровне $25^{\circ} \mathrm{C}$ в течение первых трех дней и на уровне $50^{\circ} \mathrm{C}$ - в последующие четыре дня.

Электрические соединения регулятора
 ECL Comfort 301
 с картой L32

Клеммы	Назначение	Макс. нагрузка
1	Фаза 220 В, 50 Гц	
2	Нейтраль	
3	Привод 1 открыть	0,2 A, 220 B
4	Привод 1 закрыть. Или термогидропривод ABV	0,2 A, 220 B
5	Питание привода 1	
6	Сигнал на клапан отопления, V_{1} (включен в режиме отопления)	
7	Сигнал на клапан охлаждения, V_{2} (включен в режиме охлаждения)	
8	Питание приводов $\mathrm{V}_{1}, \mathrm{~V}_{2}$	
$9\left(\mathrm{R}_{1}\right)$	Циркуляционный насос	4(2) A, 220 B
10	Питание насоса	
11-12 (R_{2})	Замкнут - охлаждение; разомкнут - отопление	4(2) A, 220 B
13-14	Замкнут - комфорт; разомкнут - эконом	4(2) A, 220 B

25-26 - выбирается 4(2) А, 220 В
28-29 - осушитель или реле наружной температуры, выбирается 4(2) A, 220 B
Примечание.
Сечение проводников для установки в клемму 0,4-1,5 мм².

Клеммы	Назначение	Рекомендовано
15,16	Системная шина	
17, 16	S_{1}, датчик наружной температуры	ESMT
18,16	S_{2}, датчик комнатной температуры. При отсутствии ECA 63	ESM-10
19, 16	S_{3}, датчик температуры подаваемого теплоносителя	ESM-11, ESMC, ESMU
20,16	S_{4}, датчик температуры поверхности	AKS21M
21,16 *	Контакт. Замкнут - принудительно комфортный режим	ECA 9010
22,16 *	Контакт. Замкнут - насос принудительно отключен	ECA 9010

* Контакт ручного, дистанционного управления. Для работы регулятор не должен находиться в режимах «Ручной» или «Останов».

Примечание.

В качестве контакта можно применять модуль переключения ЕСА 9010.

Электрические соединения регулятора
ECL Comfort 301
с картой L32
(продолжение)

Сечение проводников для установки в клемму 0,4-1,5 м м ${ }^{2}$.

Суммарная рекомендованная длина всех кабелей к датчикам, включая системную шину, 100 м. При большей длине возрастает вероятность воздействия электромагнитных помех на работу системы.

Блок ЕСА 63 и модуль ECA 80 подключаются к клеммам контроллера 15 и 16, от которых они получают питание и сигналы управления.

Специфические настройки регулятора

Контур	Пункт сервисного меню	Описание	Диапазон настроек
1	1	Наружная температура отключения отопления	$10 \ldots 70^{\circ} \mathrm{C}$
1	56	Тип привода (электро- или термогидро-)	On/Off
1	60	Нижняя граница температуры поверхности при охлаждении	$0 \ldots 99^{\circ} \mathrm{C}$
1	81,82	Верхняя граница температуры поверхности при отоплении	$0 \ldots 9{ }^{\circ} \mathrm{C}$
1	С...	Максимальная граница температуры подачи при отоплении	$10 \ldots 110^{\circ} \mathrm{C}$
1	156,157	Филтры наружной и комнатной температур	$1 \ldots 250$
1	Наружная и комнатная температуры активации или деактивации охлаждения	$10 \ldots 70^{\circ} \mathrm{C}$	

Техническое описание

Комнатная панель ECA 60

Описание и область применения

Комнатная панель ECA 60 предназначена для регулирования и коррекции температуры в помещении при работе совместно с регуляторами ECL Comfort 100, 200 и 300; подключается к электронному регулятору ECL Comfort с помощью двухпроводной шины и запитывается от электронного регулятора.
ECA 60 имеет встроенный температурный датчик.
Если у вас два контура отопления, то возможно подключение двух комнатных панелей ECA 60 к одной и той же шине. При этом устанавливаются соответствующие адреса сервисного меню ECL и на задней стенке ECA.

Принцип работы

ECA 60 воздействует на температуру теплоносителя и поддерживает температуру воздуха в помещении на постоянном комфортном или пониженном уровне.
ECA 60 имеет дисплей и нажимные кнопки для выбора установок и корректирующих функций.
Кнопки используются для выбора следующих установок коррекции и температуры:

- комфортная температура;
- пониженная температура;
- выходные дни (комфортная температура);
- дни отпуска (пониженная температура).

В нормальном режиме дисплей показывает фактическую и заданную температуры в помещении.

На дисплее могут быть показаны время и текущая температура наружного воздуха. Возможно отображение наименьшей и наибольшей температуры наружного воздуха после полуночи.

Номенклатура и коды для оформления заказа

Тип	Описание	Кодовый номер
ECA 60	Комнатная панель	087B1140

Основные технические характеристики

Диапазон установки температуры воздуха в помещении	От 10 до $30^{\circ} \mathrm{C}$
Корректировка комфортных и пониженных температур	От 1 до 19 ч
Корректировка на выходные и праздничные дни	От 1 до 19 суток
Окружающая температура	От 0 до $40{ }^{\circ} \mathrm{C}$
Температура транспортировки и хранения	От-40 до $70{ }^{\circ} \mathrm{C}$
Монтаж	Настенный
Класс защиты	IP 20
Масса	0,15 кг
Питание и связь	Шина "BUS"
Длина кабеля шины	Макс. 50 м
C м м $¢$ кировка соответствия стандартам	ЕМС-директива 89/336/EEC, 92/31/EEC, 93/68/EEC, EN 50081-1 и EN 50082-1. Директива по низк. напряж. 73/23/EEC и 93/68/EEC

Установки

Габаритные размеры

Электрические соединения

Техническое описание

Блоки дистанционного управления ЕСА 61, 63

Описание и область применения

Блоки дистанционного управления ЕСА 61, 63 используются для настройки времени, регулирования температуры воздуха в помещении и ручной коррекции погодных компенсаторов ECL Comfort 100, 200 и 300. Блок дистанционного управления подключается к электронным регуляторам ECL Comfort с помощью двухпроводной шины и запитывается от электронного регулятора.
ECA 61, 63 имеют встроенный температурный датчик, ECA 63 - встроенный датчик влажности воздуха.
Если у вас имеются два контура отопления, то возможно подключение двух блоков дистанционного управления ECA 61, 63 к одной и той же шине.

Принцип работы

номенклатура и коды для оформления заказа

Блоки ECA 61, 63 воздействуют на температуру теплоносителя и поддерживают температуру воздуха в помещении на постоянном комфортном или пониженном уровне.
Время запуска и останова системы оптимизируется.
Блоки ECA 61, 63 имеют дисплей и нажимные кнопки для выбора установок и корректирующих функций.
Кнопки используются для выбора между следующими установками коррекции и температуры:

- комфортная температура;
- пониженная температура;
- выходные дни (комфортная температура);
- дни отпуска (пониженная температура). Дополнительно могут быть установлены пределы по температуре наружного воздуха для отключения отопления и степень влияния температуры воздуха в помещении на изменение температуры теплоносителя. Также возможна установка персонального плана регулирования по часам суток и дням недели.

Возможна установка периодов времени с комфортной и пониженной температурами воздуха в помещении, а также требуемое значение температуры воздуха в помещении.

На дисплее могут быть показаны время и текущая температура наружного воздуха. Возможно отображение наименьшей и наибольшей температуры наружного воздуха после полуночи.

Основные технические характеристики

Периоды времени	2 (3) периода в сутки
Диапазон установоктемпературы воздуха в помещении, ${ }^{\circ} \mathrm{C}$	От 10 до 30
Корректировка комфортных и пониженных температур	От 1 до 19 ч
Корректировка на выходные и праздничные дни	От 1 до 19 суток
Отключение отопления , $^{\circ} \mathrm{C}$	Выкл., от 10 до 30
Влияние температуры воздуха в помещении	От -99 до 0 или от 0 до +99
Температура транспортировки и хранения, ${ }^{\circ} \mathrm{C}$	От - 40 до 70
Окружающая температура, ${ }^{\circ} \mathrm{C}$	От 0 до 40
Монтаж	Настенный
Корпус	IP 20
Macca, кг	0,15
Питание и связь	Шина "BUS"
Длина кабеля шины, м	Макс. 50
($\mathcal{\text { - маркировка соотвегтвия стандартам }}$	ЕМС-директива 89/336/EEC, 92/31/EEC, 93/68/EEC, EN 50081-1 и EN 50082-1. Директива по низк. напряжению 73/23/EEC и 93/68/EEC

Установки

Габаритные размеры

Электрические соединения

Адреса задаются на задней стенке ЕСА и в сервисном меню ECL

Техническое описание

Релейный модуль ЕСА 80

Описание
и область применения

Релейный модуль ECA 80 применяется при использовании электронного регулятора температуры ECL Comfort 300, 301 с картой, которая поддерживает управление ЕСА 80. Модуль включает в себя два электромеханических реле с контактной группой на переключение. Питание и управление осуществляются по двум проводам, подключенным к шине "BUS" регулятора. Красный провод подключается к контакту 15, черный к контакту - 16. Модуль размещается в нише на задней стороне клеммной панели для настенного монтажа.

Номенклатура и коды для оформления заказа

Тип	Описание	Кодовый номер
EСA 80	Релейный модуль	$\mathbf{0 8 7 8 1 1 5 0}$

Электрические соединения

Технические характеристики

Электропитание и связь	Шина "BUS" (18 В, питание/связь)
Потребляемая мощность	0,25 Вт
Нагрузка на релейных выходах	~ 230 В, 4(2) А

Габаритные размеры

Высота \times длина \times глубина, мм	$60 \times 55 \times 20$
Масса, кг	0,15

Техническое описание

Техническое описание

Модуль интерфейса Modbus ECA 71 для регуляторов серии ECLComfort 200,300,301

Описание

и область применения

Интерфейсный модуль ЕСА 71 обеспечивает подключение регуляторов ECL 200, 300, 301 к стандартной шине RS485 или Modbus-RTU, что позволяет с использованием OPC-сервера Modbus произвольного производителя или через стандартный канал или драйвер Modbus вести дистанционный обмен данными между SCADA-системой и указанными регуляторами.

Модуль ЕСА 71 работает со всеми прикладными картами регуляторов ECL 200, 300, 301.

Для обмена доступны следующие параметры:

- измеряемые значения температур;
- расчетные уставки и задания;
- ручное управление;
- контроль состояния выходов;
- индикация режима работы;
- контроль и управление температурным графиком;
- ограничение расхода и обратной температуры;
- недельные планы.

Описание адресации регуляторов имеется на электронных носителях ООО «Данфосс». Также имеется бесплатный OPC-сервер Mod-bus-RTU Danfoss, поддерживающий автоматическое конфигурирование контроллеров ECL Comfort.

Пример применения

Целесообразно применять на локальных объектах (например, системы вентустановок в отдельных зданиях), где обоснована прокладка выделенных проводных пар для подключения к системе управления зданием произвольной архитектуры.

Номенклатура и коды для оформления заказа

Тип	Описание	Кодовый номер
ECA 71	Интерфейсный модуль Modbus	087B1126

Основные технические

 данные| Температура транспортировки и хранения, ${ }^{\circ} \mathrm{C}$ | $-40 \ldots+70$ |
| :--- | :--- |
| Рабочая температура, ${ }^{\circ} \mathrm{C}$ | $0 \ldots+50$ |
| Установка | Тыльный разъем контроллера |
| Масса, г | 12 |
| Приемопередатчик | RS485 |
| Скорость обмена данными, кб/с, полудуплекс | 38,$4 ; 19,2$ |
| Чтение | По одному параметру; 200 параметров в минуту |
| Сеть | Витая пара в соответствии со спецификациями
 RS485 |
| Формат данных | Modbus-RTU |

Назначение контактов сетевого разъема

Контакт 1	Данные Д+
Контакт 2 (средний)	Общий
Контакт 3	Данные Д-

[^0]Техническое описание

Коммуникационный модуль ECA 81 (RS232)

Описание и область применения

Коммуникационный модуль ECA 81 предназначен для связи внешних устройств с регуляторами ECL Comfort 200, 300, 301 по интерфейсу RS232 с доступом с тыльной стороны регулятора. Протокол полностью идентичен протоколу интерфейса на передней панели регуляторов ECL 300, 301; розетка RJ12. Одновременно возможна работа только по одному интерфейсу с приоритетом интерфейса передней панели.
Обеспечивает доступ к внутренней информационной базе регулятора для записи и чтения. Указанный протокол реализован в сервисной программе ECL Comfort и в OPC- сервере ECL Comfort.
Обеспечивается ответным разъемом с подключением «под винт».

Номенклатура и коды для оформления заказа

Тип	Описание	Кодовый номер
ECA 81	Коммуникационный модуль RS232	$\mathbf{0 8 7 B 1 1 5 1}$

Внешние соединения

Модуль ECA 81

Контакт разъема ЕCA 81	Назначение
1	Передача данных
2	Общий
3	Прием данных

Схема кабеля для подключения к гнезду передней панели ECL Comfort (схема кабеля*)

Разетка D-sub к ПК	
Разъем RJ12 к гнезду на передней панели ECL	Формат передачи данных: - скорость - 1200; - число бит - 8; - паритет — 1; - стопбит - 1.

* Изготавливается пользователем.

Рекомендуется применять стандартный 4-жильный телефонный кабель длиной не более 3 м.

Процедура установки

1. С помощью бокорезов удалите крайнюю заглушку на задней стенке прибора.

2. Утопите модуль в отверстие и аккуратно наденьте его на разъем материнской платы регулятора.

3. Смонтируйте новую заглушку B, поставляемую вместе с модулем.

Техническое описание

Коммуникационный модуль ECA 82 (LonWork)

Описание
и область применения

Модуль связи ЕСА 82 обеспечивает подключение регуляторов ECL Comfort 200, 300, 301 к сети LON по интерфейсу FTT-10 для мониторинга и управления со стороны других узлов сети. При использовании ECA 82 применение других коммуникационных модулей невозможно.
ECA 82 реализует стандартный протокол LonWorks и переменные в соответствии со стандартным перечнем SNVT LON.

Модуль совместим со всеми прикладными картами регуляторов ECL Comfort 200, 300, 301.

Номенклатура и коды для оформления заказа

Тип	Описание	Кодовый номер
ECA 82	Модуль LON, FTT-10	$\mathbf{0 8 7 B 1 1 5 2}$

Основные технические характеристики

Температура транспортировки $и$ хранения, ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Рабочая температура, ${ }^{\circ} \mathrm{C}$	$0 \ldots+50$
Установка	Разъем на плате регулятора
Масса, г	12
Приемопередатчик	FTT 10
Скорость, кбит $/$ с	78

В комплект поставки входят ответный разъем, заглушка, инструкция.

Контакты

Контакт 1	Линия 1
Контакт 2 (средний)	Не используется
Контакт 3	Линия 2

Контакты 1 и 3 взаимозаменяемы.
Совместимость с другими модулями ЕСА

ECA 80	ECA 81	ECA 87	ECA 88
Да	Нет	Нет	Да

ECA работает с модулями ECA 60, 61, 63.

Список SNVT
 (продолжение)

Техническое описание

Техническое описание

Коммуникационный модуль ECA 87 (RS232, архив)

Описание и область применения

Модуль ECA 87 обеспечивает для регуляторов ECL Comfort 200, 300, 301 ведение журнала данных и порт доступа через модем или напрямую через интерфейс RS232.

Кроме этого, модуль позволяет делать аварийные звонки в случаях, когда используемая прикладная карта генерирует аварии.

Мониторинг аварий реализуется на регуляторах версии не младше 1.08.

Принцип действия

Модуль ECA 87 предоставляет порт RS232 регуляторам ECL Comfort для дистанционного мониторинга и управления. Если модуль ECA 87 установлен, другие каналы связи не могут быть реализованы.

ЕСА 87 использует протокол символьного типа, что позволяет применять для связи стандартные коммуникационные программы, например программу HyperTerminal. Интерфейс реализует один их двух протоколов - интерактивный и кодированный, по принципу CRC. Также есть два разных формата ответов - стандартный и краткий. Стандартный формат поддерживает текстовые строки, воспринимаемые человеком, например, Done. Краткий формат использует цифровые коды в ответах, например \#100.

По умолчанию модуль поддерживает модем LASAT Safire 560 Voice. Однако имеется возможность записывать пользовательские строки инициализации, что позволяет поддерживать любые Hayes-совместимые модемы, в том числе сотовые.

Имеется возможность осуществлять по модему индивидуальную настройку многих контроллеров, установленных в разных местах.

Функция регистрации модуля позволяет записывать историю для параметров регулятора и состояния реле.

Максимальное число регистрируемых параметров - 15 .

Интервалы выборки задаются из диапазона от 5 с до 2 ч. При назначении выборки 5 с, только 5 параметров могут регистрироваться одновременно.

Данные хранятся в энергонезависимой памяти. После сброса и отказов питания запись данных возобновляется, которая сопровождается временными метками.

Если регулятор имеет версию не младше 1.08, имеется возможность посылки аварийных сообщений, но при условии, что прикладная карта генерирует аварии. При этом регулятор дозванивается до заданного номера. Аварийное сообщение включает идентификатор вызывающего регулятора.

Описание протоколов содержится на электронных носителях ООО «Данфосс».

Тип	Описание	Кодовый номер
ЕСА 87*	RS232 модуль связи и регистрации	$\mathbf{0 8 7 B 1 1 6 0}$
Кабель модема	RS232 МDM, кабель $1,5 \mathrm{~m}$	$\mathbf{0 8 7 B 1 1 7 1}$
Кабель ПК	RS232 PC, кабель 1,5 м	$\mathbf{0 8 7 B 1 1 7 2}$

[^1]Основные технические характеристики

Температура транспортировки и хранения, ${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
Температура окружающей среды, ${ }^{\circ} \mathrm{C}$	$0 \ldots+50$
Монтаж	Разъем на плате
Масса, г	12
ЕСА 87, соединитель	JST S10B-PHDSS
Максимальная длина кабеля, ПК	1,5 м максимум/DB-9 F
Максимальная длина кабеля, модем	1,5 м максимум/DB-25 M
Формат	
Строка инициализации	2 х 24 символов
Аварийный номер	24 символа
Идентификатор аварии	15 символов
Память данных	130,000 значений
Период выборки	5 с-2 ч/土2 $\%$
Максимальное число параметров	15

Поддерживаемые версии регуляторов

ECL Comfort	Удаленный контроль + регистрация	Удаленный контроль + регистрация + + сигнализация аварий
ECL Comfort 200	Версия 1.04	Нет
ECL Comfort 303,301	Версия 1.04	Версия 1.08

Электрические сигналы

JST соединитель	Описание, вход/выход
№ 1	TX - выход
№ 2	GND - земля
№ 3	RTS - выход
№ 4	DTR - выход
№ 5	RX - вход
№ 6	DCD - вход
№ 7	RI - вход
№ 8	DSR - вход
№ 9	Нет
№ 10	CTS - вход

Техническое описание

Блок питания ЕСА 99

Описание
и область применения

Блок питания (трансформатор) ECA 99 предназначен для запитки радиоэлектронных устройств напряжением 24 В, 50 Гц.

Исполнение

Класс защиты IP44. Пластмассовый корпус. Двойная электрическая изоляция. Клеммные соединения для внешних цепей закрываются пластиковой крышкой.

Электрические характеристики

Электрические характеристики	3начение
Входное номинальное напряжение 1, В/Гц	$230 / 50$
Входное номинальное напряжение 2, В/Гц	$250 / 50$
Выходное номинальное напряжение, В/Гц	$24 / 50$
Номинальная электрическая мощность, ВА	35
Номинал предохранителя входной цепи, А	1,6

Габаритные размеры и масса

Габариты, мм: $120 \times 72 \times 60$.
Масса: 0,7 кг.

Способ монтажа
Тремя винтами к монтажной плоскости.

Заказ

Тип	Назначение	Кодовый номер
ЕСА 99	Блок питания	$\mathbf{0 8 7 B 1 1 5 6}$

Техническое описание

Модуль переключения ЕСА 9010

Описание
и область применения

Модуль переключения ЕСА 9010 используется для принудительного включения комфортного или пониженного режима в регуляторах ECL Comfort 200, 300, 301 в отличие от режима, задаваемого внутренними часами регулятора. Для задания нужного режима используется предусмотренный пользователем внешний выключатель (задается строкой 141).

Функция реализуема в регуляторах версии не младше 1.06.
Кроме этого, требуется один свободный вход температурного датчика для подключения

зеленого провода модуля. Обычно это вход датчика комнатной температуры или вход датчика температуры обратного теплоносителя.

Функции

Ручное управление активно только, если регулятор находится в автоматическом режиме (часы).

Установка строки 141 сервисного меню (вход переключения)
ECL Comfort 200: Off, 1, 2, 3 или 4
ECL Comfort 300, 301: Off, 1, 2, 3, 4, 5 или 6
$1,2,3,4,5$ или 6 относятся к датчикам $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ or S_{6}.

Замыкание контактов 3 и 2 приводит к принудительному переходу в комфортный режим,

замыкание контактов 3 и 1 - в пониженный режим.

Тип	Описание	Размеры, мм	Кодовый номер
ЕСА 9010	Модуль переключения	$\mathrm{L} \times \mathrm{W} \times \mathrm{H}, 50 \times 35 \times 18$	087B1160

Монтаж

Подключение

Максимальная длина кабеля до внешнего переключателя 100 м.

Техническое описание

OPC-сервер для регуляторов ECL Comfort

Описание и область применения

ОРС-сервер доступен как демонстрационная так и коммерческая, полнофункциональная версия. Демонстрационная версия рассчитана на ограниченное число запусков (15), достаточное для проверки работоспособности
Соединяет на программном уровне регулятор ECL Comfort и произвольную SCADA-систему по интерфейсу RS232. Используется один ОРС-сервер для большого (до 252 шт.) числа регуляторов.

Этот интерфейс реализован на разъеме лицевой панели регуляторов ECL Comfort 300, 301 или на дополнительном модуле ECA 81, установленном в регуляторе ECL Comfort 200.
ОРС-сервер устанавливается на компьютере диспетчерского пункта в среде Windows. В компьютере должна быть обеспечена поддержка как минимум числа свободных СОМ-портов, равного числу подключаемых к нему регуляторов ECL Comfort. После установки сервер конфигурируется, что означает указание типа прикладной карты, перечень доступных на верхнем уровне переменных и задание СОМпорта для данного теплового пункта. Конфигурирование осуществляется через интуитивно понятное меню с применением

правой и левой клавиш мыши. Работа может выполняться специалистом на уровне уверенного пользователя ПК и знакомым с особенностями регулятора ECL Comfort. Сервер поддерживает систему всплывающих подсказок.
Перед началом работы следует составить план распределения СОМ-портов, где указывается соответствие между номером каждого теплового пункта, номером СОМ-порта и типом используемой карты регулятора. Этот план должен быть воплощен в процессе конфигурирования OPC-сервера в виде соответствующего дерева объектов.
ОРС-сервер обеспечивает доступ к измеряемым температурам, текущим уставкам на температуры подачи и обратной, параметрам температурного графика, недельному графику, заданиям на температурные режимы, температурным границам.
Для детального ознакомления с работой сервера можно обратиться к файлу справки сервера, который доступен через пункт меню «Помощь».

Выбирается тип карты для очередного теплового пункта. Доступны карты C14, C60, C62, C66, C75, L66 и карты типа P.

Для выбранной карты выбираются параметры, которые в дальнейшем будут представлены диспетчеру.

Выбранной карте назначается номер СОМпорта диспетчерского компьютера, соответствующий тепловому пункту. Выбирается опция «Установить по умолчанию», что обеспечивает автоматическую загрузку выбранной конфигурации при запусках сервера.

Сервер запускается, после чего можно контролировать состояние регулятора.
Это окно служит исключительно наладочным целям и не является рабочим экраном диспетчера.

Воспользовавшись правой кнопкой, можно записать новое значение в выбранный параметр.

Информация для заказа

Наименование	Описание	Кодовый номер
ECL OPC	OPC-сервер для ECL Comfort	087B-ECLOPC

Некоторые сведения о применении технологий
OPC в системах диспетчеризации централизованного теплоснабжения

В настоящее время в области промышленной автоматизации широкое применение находит так называемая технология ОРС (на русском звучит как «ОПС»). Эта технология представляет собой универсальный механизм обмена технологическими данными по различным каналам связи между регуляторами, устройствами связи с объектом (УСО), с одной стороны, и системами представления технологической информации, системами оперативно-диспетчерского управления, базами данных - с другой. ОРС-сервер разрабатывается под конкретный прибор или протокол. Главная цель, достигаемая этой технологией, — это предоставление максимальной независимости между разработчиками диспетчерских пунктов и поставщиками оборудования

индивидуальных и центральных тепловых пунктов в процессе создания единой системы теплоснабжения. Для разработчиков верхнего уровня использование технологий ОРС является естественным, так как практически все современные SCADAсистемы поддерживают соответствующие технологии. Поставщики оборудования для тепловых пунктов просто должны сделать выбор в пользу компонентов, обеспеченных программными OPC-серверами. Такой подход позволяет существенно сократить затраты времени на согласования между участниками процесса и избежать большинства компромиссов, на которые стороны ранее были вынуждены идти во имя достижения общей цели.

Некоторые сведения
о применении технологий
OPC в системах диспетчеризации централизованного теплоснабжения (продолжение)

OPC-технология предполагает архитектуру клиент-сервер, когда клиент - в наших случаях SCADA-система или другое ПО верхнего уровня, запрашивает данные у сервера, который берет на себя всю работу по взаимодействию с низовым оборудованием. Такая технология позволяет также вести наладку системы диспетчеризации, когда системный интегратор практически не присутствует на тепловом пункте. Это определяет четкую границу между ответственностью поставщика теплового пункта и ответственностью системного интегратора. Предполагается применение SCADA-системы от произвольного

производителя, поскольку этот продукт может считаться внешним с точки зрения автоматизации теплового пункта и не имеет влияния на решения, закладываемые на нижнем уровне.

Для систем районной диспетчеризации интересно применение технологии «СОМ-порт через ОРС», которая позволяет физические порты приборов ИТП (ECL Comfort) через районную или домовую сеть TCP/IP представить в виде соответствующих виртуальных портов на диспетчерском пункте для подключения ПО АРМ оператора.

Вариант реализации технологии на базе проводных соединений по витым парам

Простой вариант для мониторинга небольшого числа объектов с удалением до 1-1,5 км. Требует наличия достаточного количества свободных, физических СОМ-портов в компьютере диспетчерского пункта.

Вариант реализации технологии в сети TCP/IP на виртуальных портах

Перспективное решение с учетом бурного продвижения сетевых технологий.
Используется многофункциональная сетевая инфраструктура. Возможно подключение полноценной SCADA-системы при использовании ОРС-серверов оборудования ТП. Также работа со стандартным ПО оборудования. Возможность удаленного доступа к информации. Совмещение разнородного оборудования по стандартам открытых систем. Позволяет диспетчеризировать старые установки. Используется существующая районная или домовая сетевая инфраструктура или создается собственная.
Суть решения состоит в применении коммуникационного сервера (комбинация оборудования и внешнего ПО поддержки), который в компьютере диспетчера создает виртуальные СОМ-порты, соответствующие физическим СОМ-портам , находящимся на удаленных тепловых пунктах.
«Виртуальность» этих портов состоит в том, что они физически отсутствуют в компьютере,

но возможность подключения к ним программного обеспечения имеется. Число COM-портов может достигать 252 в одном компьютере.
К достоинствам решения относится возможность подключения к одному каналу, помимо ECL Comfort, теплосчетчиков практически от любого производителя, которые будут считываться собственным программным обеспечением, установленным на диспетчерском пункте. Кроме этого, имеется возможность подключить через COM-порт подсистему мониторинга для ввода-вывода унифицированных сигналов, например, от датчиков давления и состояния оборудования.
Решение опробовано и может использоваться как на локальных, так и распределенных объектах. Коммуникационный сервер на нужное число СОМ-портов и компоненты подсистемы мониторинга поставляются сторонними производителями (ICP DAS, Adam, Моха и тд).

Техническое описание

Датчики температуры ESMT, ESM-10, ESM-11, ESMB-12, ESMC, ESMU, AKS

Описание

и область применения

Датчики представляют собой платиновые термометры сопротивления, 1000 Ом при $0^{\circ} \mathrm{C}$. Все температурные датчики являются двухпроводными устройствами с симметричной схемой включения.

Для обеспечения надежного контакта с трубами поверхностный датчик типа ESM-11 снабжен прижимной пружиной. Базовый датчик содержит платиновый элемент с характеристикой, соответствующей EN 60751, градуировка Pt 1000.

Номенклатура и коды для оформления заказа

Датчики температуры

Тип	Назначение	Кодовый номер
ESMT	Датчик температуры наружного воздуха	$\mathbf{0 8 4 N 1 0 1 2}$
ESM-10	Датчик температуры внутреннего воздуха	$\mathbf{0 8 7 B 1 1 6 4}$
ESM-11	Поверхностный датчик	$\mathbf{0 8 7 B 1 1 6 5}$
ESMB-12	Универсальный датчик	$\mathbf{0 8 7 B 1 1 8 4}$
ESMC	Поверхностный датчик	$\mathbf{0 8 7 N 0 0 1 1}$
ESMU	Погружной датчик, 100 мм, нержавеющая сталь	$\mathbf{0 8 7 B 1 1 8 2}$
ESMU	Погружной датчик, 250 мм, нержавеющая сталь	$\mathbf{0 8 7 B 1 1 8 3}$
ESMU	Погружной датчик, 100 мм, медь	$\mathbf{0 8 7 B 1 1 8 0}$
ESMU	Погружной датчик, 250 мм, медь	$\mathbf{0 8 7 B 1 1 8 1}$
AKS 21 М	Универсальный датчик (для солнечного коллектора), силиконовый кабель	$\mathbf{0 8 4 N 2 0 0 3}$

Запасные части и принадлежности

Тип	Назначение	Кодовый номер
Гильза	Нержавеющая сталь, для ESMU, 100 мм (084N1052)	087B1190
Гильза	Нержавеющая сталь, для ESMU, 250 мм (084N1053)	087 B 1191
Гильза	Нержавеющая сталь, для ESMB-12 и AS21M (087N0010), 100 мм	087B1192
Гильза	Нержавеющая сталь, для ESMB-12 и AS21M (087N0010), 250 мм	087 B 1193
Теплопроводящая паста, 3,5 cm ${ }^{3}$		041E0110

Соединение

Соединительный кабель: $2 \times 0,4-1,5$ мм² 2

График изменения сопротивления датчика от изменения температуры среды

Общие технические

 характеристикиВсе датчики температуры содержат элемент Pt 1000. К датчикам прилагаются инструкции.

Тип	Диапазон температуры	Kорпус	Постоянная времени	$\begin{array}{r} \mathbf{P}_{y^{\prime}} \\ \text { бap } \\ \hline \end{array}$
ESMT	От -50 до $50^{\circ} \mathrm{C}$	IP 54	<15 мин	-
ESM-10	От -30 до $50^{\circ} \mathrm{C}$	IP 54	8 мин	-
ESM-11	От 0 до $100{ }^{\circ} \mathrm{C}$	IP 32	3 c	-
ESMB-12	От 0 до $100{ }^{\circ} \mathrm{C}$	IP 54	20 c	-
ESMC	От 0 до $100{ }^{\circ} \mathrm{C}$	IP 54	10 c	-
ESMU	От 0 до $140^{\circ} \mathrm{C}$. Кабельный разъем макс. $125^{\circ} \mathrm{C}$	IP 54	$\begin{gathered} 2 \text { с (в воде) } \\ 7 \text { с (в воздухе) } \\ \hline \end{gathered}$	25
AKS 21 M	От -70 до $160{ }^{\circ} \mathrm{C}$	IP 54	20 c	-
Гильза	От 0 до $200{ }^{\circ} \mathrm{C}$	-	См. "Спецификацию"	25

				Упаковка
	$\begin{gathered} \text { ESM-10 } \\ \text { ESMT } \end{gathered}$	Крышка: Корпус:	ABS PC (поликарбонат)	xx**
	ESM-11	Крышка: Кабель:	ABS PC (поликарбонат)	xx**
	ESMB-12	Оболочка: Кабель:	18/8, нержавеющая сталь 2,5 м, PVC, $2 \times 0,2$ мm 2	x^{*}
Материалы	ESMC	Оболочка: Кабель:	Верхняя часть: нирол; нижняя часть: никелированная медь, 2 м, PVC, $2 \times 0,2$ мm² 2	${ }^{*}$
	ESMU	Трубка и ко Соедините	AISI 316 разъем: PA (полиамид)	${ }^{*}$
	ESMU (Cu)	Трубка: Корпус: Соедините	медь латунь разъем: РА (полиамид)	${ }^{*}$
	AKS 21 M	Оболочка: Кабель:	18/8, нержавеющая сталь 2,5 м, силикон, $2 \times 0,2$ мм 2	${ }^{*}$
	Гильза	Трубка и ко	AISI 316	
	ESM-11	Две винтов	ммы под крышкой	
	ESMB-12	2-проводн	ель ($2 \times 0,2$ мм²)	
	ESMC	2-проводн	ель ($2 \times 0,2$ мм²)	
еское	ESM-10	Две винтов	ммы под крышкой	
	ESMU	Разъем тип поставляет	hmann, две клеммы, кабельный ввод PG тчиком	
	AKS 21 M	2-проводн	ель ($2 \times 0,5$ мм²)	
	ESM-10	Настенный	ж (винты прилагаются)	
	ESM-11, ESMC	Зажим для	, у $^{\text {= 15-65 мм, (прилагается) }}$	
Монтаж	ESMB-12	Для устано	ильзе, на плоской поверхности или в воз	оводе
Монтаж	ESMU	G $1 / 2 \mathrm{~A}$, шайб	лагается)	
	AKS 21 M	Для устано	плоской поверхности или в воздуховоде	
	Гильза	$\mathrm{G} 1 / 2 \mathrm{~A}$		

* x — PE (полиэтилен) пакет.
* xx - коробка.

Спецификация

Характеристика датчика	Ссылка на EN 60751, Класс 2 B	Макс. погрешность $\mathbf{2 ~}^{\circ} \mathbf{C}$
Постоянные времени	ESMU (Cu) в гильзе	32 с (в воде)
		160 с (в воздухе)
	ESMB-12 в гильзе	20 с (в воде)
	140 с (в воздухе)	

Габаритные и присоединительные размеры

		084N1050 и -51	084N1052 и -53
ESMU	(А)		Медь
	(B)	Нержавеющая сталь (AISI 316)	
	(С)	Нержавеющая сталь (AISI 316)	Латунь

Техническое описание

Термостаты типа KP

Abstract

Описание и область применения

Термостаты типа КР — электромеханические термореле с изменяемым дифференциалом, предназначенные для регулирования температуры жидких и газообразных сред, а также сигнализации в различных промышленных установках.

Например, КР могут использоваться:

- в схеме защиты воздухонагревателя приточной вентиляционной установки от замерзания при падении температуры воздуха у трубок нагревателя ниже критического значения;
- для включения и выключения циркуляционного насоса в системе горячего водоснабжения здания;
- в качестве защитного термостата, исключающего прорыв перегретого теплоносителя в систему отопления и т.п.

Термостат снабжен однополюсным переключателем (SPDT), положение которого зависит от настройки термостата и температуры датчика. К контактам переключателя может непосредственно подключаться двигатель переменного тока мощностью до 2 кВт. При более мощных двигателях или двигателях постоянного тока термостат устанавливается в контурах их управления.

Номенклатура и коды для оформления заказа

Термостаты

Тип	Кодовый номер	Тип термобаллона	Диапазон настройки рабочей темпер., ${ }^{\circ} \mathrm{C}$	Диапазон настройки дифференциала, ${ }^{\circ} \mathrm{C}$		Макс. допустимый нагрев термобаллона, ${ }^{\circ} \mathrm{C}$	Длина капилляра, MM
				низшая темпер.	высшая темпер.		
KP 61	060L110066	A*	От -30 до 15	5,5-23	1,5-7	120	2
KP 61	060L110166	A*	От -30 до 15	5,5-23	1,5-7	120	5
KP 79	$060 \mathrm{L1126}$	E3**	От 50 до 100	5-15	5-15	150	2

*Прямая капиллярная трубка (без уширения).
** Капиллярная трубка с термобаллоном.

Номенклатура и коды для оформления заказа (продолжение)

Дополнительные принадлежности

Наименование	Описание	Кодовый номер
Кронштейны для монтажа	Стенной Угловая скоба 4 шурупа M4 и 4 шайбы	$\begin{aligned} & 060-105566 \\ & 060-105666 \\ & 060-105466 \end{aligned}$
Держатель термобаллона	Для термостатов с датчиком диаметром 9,5 мм Резиновая втулка для прокладки импульсной трубки сквозь стену Скоба для закрепления импульсной трубки на стене	$\begin{gathered} 017-415766 \\ 017-5392 \\ 017-420166 \end{gathered}$
Кабельный ввод с резьбой	Винтовой патрубок Pg13,5 и Pg16 для ввода кабеля диаметром соответственно 6-14 и 8-16 мм	060-105966
Пломба	Для защиты от изменения настроек	060-105766
Верхняя крышка	Для увеличения класса защиты с IP33 до IP44	060-109766
Гильза	Под термобаллон диаметром 9,5 мм, нерж. сталь, длина 112 мм То же, из латуни	$\begin{aligned} & \text { 017-436966 } \\ & 017-437066 \end{aligned}$
Теплопроводящая паста	Тюбик, 5 г	041 E0114

Основные технические характеристики

Температура окружающей среды	От -40 до $70{ }^{\circ} \mathrm{C}$
Переключатель	Однополюсный SPDT
Контактная нагрузка	Переменный ток: AC1: $16 \mathrm{~A}, 440 \mathrm{~B} ;$ $\mathrm{AC3:6A,440B;}$ $\mathrm{AC15:10A,440B}$ Постоянный ток: DC13: $12 \mathrm{Bt}, 220 \mathrm{~B}$ (ток управления)
Кабельное соединение	Кабельный ввод Pg13.5 для кабеля, диаметр 6-14 мм Кабельный ввод Pg16 для кабеля, диаметр 8-16 мм
Класс защиты	IP33 (для IP44 должна заказываться специальная крышка)

Контактная группа

Устройство

Габаритные и присоединительные размеры

Термостаты KP 61 и КР 79

Монтажные отверстия на задней стенке KP 61 и КР 79

Стенной кронштейн

Угловая скоба

Термобаллон KP 79

Техническое описание

Преобразователь давления типа MBS 3000

Описание

и область применения

Номенклатура и коды для оформления заказа

Преобразователи давления предназначены для измерения давлений жидкостей и газов в промышленности. Корпус датчика изготовлен из кислотостойкой нержавеющей стали. Точность обеспечивается лазерной калибровкой, встроенной температурной компенсацией и помехозащищенностью в соответствии с нормами электромагнитной совместимости EU EMC.

Стандартные преобразователи (вых. сигнал 4-20 мА, штекер DIN 43650A)

Резьба патрубка подвода давления	Диапазон измерений давления, бар	Тип	Кодовый номер
G $1 / 4 \mathrm{~A}$	0-1	MBS 30001011 - 1AB04	060G1113
	0-1,6	MBS 30001211 - 1AB04	060G1429
	0-2,5	MBS 30001411 - 1AB04	060G1122
	0-4	MBS 30001611 - 1AB04	060G1123
	0-6	MBS 30001811 - 1AB04	060G1124
	0-10	MBS 30002011 - 1AB04	060G1125
	0-16	MBS 30002211 - 1AB04	060G1133
	0-25	MBS 30002411 - 1AB04	060G1430
	0-40	MBS 30002611 - 1AB04	060G1105
	0-60	MBS 30002811 - 1AB04	060G1106
	0-100	MBS 30003011 - 1AB04	060G1107
	0-160	MBS 30003211 - 1AB04	060G1112
	0-250	MBS 30003411 - 1AB04	060G1111
	0-400	MBS 30003611 - 1AB04	060G1109
	0-600	MBS 30003811 - 1AB04	060G1110

Вспомогательные принадлежности

Наименование	Кодовый номер
Переходник Pg9 для армированного кабеля с внешним диаметром от 12,6 до 15,6 мм. Штепсельный разъем	$\mathbf{0 6 0 G 0 2 1 1}$
Элементы крепления к стенке трубы	$\mathbf{0 6 0 G 0 2 1 3}$
Переходники G $1 / 4 \mathrm{~A}-\mathrm{G} 1 / 2$	$\mathbf{0 6 0 - 3 3 4 0}$

Основные технические характеристики

Метрологические и механические характеристики				
Рабочая среда		Воздух, газы, жидкости, в том числе масла		
Тип измеряемого давления		Абсолютное/относительное		
Диапазоны измерений, бар		0-1 ... 0-600		
Диапазон допустимых температур рабочей среды, ${ }^{\circ} \mathrm{C}$		от -40 до 80		
Диапазон компенсированных температур, ${ }^{\circ} \mathrm{C}$		от 0 до 80		
Предел допускаемой основной приведенной погрешности		$\leq \pm 0,5-1 \%$ диапазона измерений		
Дополнительная погрешность на изменение температуры окружающего воздуха		$\pm 0,2$ \% диапазона измерений $/ 10^{\circ} \mathrm{C}$		
Время реакции, мс		<4		
Предельное (статическое) давление перегрузки		6-кратный диапазон измерений, но не более 1500 бар		
Давление разрыва чувствительного элемента		>6-кратного диапазона измерений, но не более 2000 бар		
Технологическое соединение		Внешняя резьба, G ½"A DIN 3852 (стандартно)		
Материал частей, контактирующих со средой		Нержавеющая сталь AISI 316L		
Корпус		Нержавеющая сталь AISI 316L, класс защиты IP65 или IP67 (в зависимости от типа электрического присоединения)		
Виброустойчивость	синусоидальное воздействие	5-25 Гц амплитудой $15,9 \mathrm{~mm}-\mathrm{pp}, 25-2000$ Гц с ускорением 20 g		
	случайное воздействие	5-1000 Гц с ускорением 7,5 g		
Устойчивость к ударам		Удар 500 g в течение 1 мс по IEC 60068-2-27		
Масса, кг		0,2-0,3		
Электрические характеристики				
Выходной сигнал		$\begin{gathered} \text { 4-20 мА } \\ \text { (стандартно) } \end{gathered}$	0-5 B, 1-5 B, 1-6 B	0-10 B, 1-10 B
Защита от неправильного включения полярности		Есть		
Напряжение питания $\mathrm{U}_{\text {пит }}$, B		9-32	9-30	15-30
Номинальный ток, мА		-	≤ 5	≤ 8
Предельный ток, мА		28	-	-
Влияние изменения U пит $^{\text {на точность }}$		$\leq \pm 0,05$ \% диапазона измерений/10 В		
Выходное сопротивление		-	≤ 25 Ом	≤ 25 Om
Сопротивление нагрузки, Ом		$\mathrm{RL} \leq\left(\mathrm{U}_{\text {пит }}-9\right) / 0,02$	RL>10 кОм	RL>15 кОм
Электрическое соединение		Стандартно, штекер DIN 43650		

Схема электрических соединений

Электрическое подключение преобразователя со штекером DIN 43650 для выходного сигнала 4-20 мА

Электрическое подключение преобразователя со штекером DIN 43650 для выходного сигнала по напряжению

Габаритные и присоединительные размеры
Тип

Монтаж
Для проведения демонтажа преобразователя без остановки системы рекомендуется устанавливать перед ним изолирующий клапан Danfoss MBV 2000 или шаровой кран.

При необходимости обеспечения измерений давления сред с высокой температурой (выше допустимого предела) требуется использовать конденсационную петлю.

Меры безопасности

Не допускается демонтаж преобразователя при наличии давления в системе. Преобразователи давления должны быть использованы строго по назначению и в

соответствии с указанием в технической документации. К обслуживанию преобразователя допускается персонал, изучивший его устройство и правила техники безопасности.

Транспортировка, хранение и утилизация

Транспортировка и хранение преобразователей давления осуществляются в соответствии с требованиями ГОСТов 15150-69, 23216-78, 51908-2002.
Утилизация изделия производится в соответствии с установленным на предприятии порядком (переплавка, захоронение, перепродажа) в соответствии с Законами РФ №96-Ф3
"Об охране атмосферного воздуха", №89-Ф3 "Об отходах производства и потребления", № 52-Ф3 "О санитарно-эпидемиологическом благополучии населения", а также другими российскими и региональными нормами, актами, правилами, распоряжениями и т. д., принятыми во исполнение указанных законов.

Техническое описание

Реле давления (прессостаты) типа KPI

Описание
и область применения

Прессостаты типа КРІ - электромеханические реле давления с изменяемым дифференциалом, предназначенные для регулирования давления жидких и газообразных сред, а также сигнализации в различных промышленных установках. Например, KPI могут использоваться в узлах подпитки отопительных и других систем теплоснабжения зданий, присоединенных к наружным тепловым сетям по независимой схеме (через водоподогреватели). Прессостат снабжен однополюсным переключателем (SPDT), положение которого зависит от настройки прессостата и давления на датчике.

Номенклатура и коды

 для оформления заказаПрессостаты

Тип	Кодовый номер	Размер патрубка подвода давления	Диапазон настройки рабочего давления, бар	Диапазон настройки дифференциала, бар	Макс. рабочее давление, бар	Масса, кг
KPI 35	$\mathbf{0 6 0 - 1 2 1 7 6 6}$	$\mathrm{G} 14^{\prime \prime} \mathrm{A}$	От $-0,2$ до 8	$0,4-1,5$	18	0,3
KPI 36	$\mathbf{0 6 0 - 1 1 8 9 6 6}$	$\mathrm{G} 1 / 4^{\prime \prime} \mathrm{A}$	От 4 до 12	$0,5-1,6$	18	0,3

Дополнительные принадлежности

Наименование	Описание	Кодовый номер
Кронштейны для монтажа	Стенной Угловая скоба 4 шурупа M4 и 4 шайбы	$\begin{aligned} & 060-105566 \\ & 060-105666 \\ & 060-105466 \end{aligned}$
Кабельный ввод с резьбой	Кабельный ввод Pg13,5 и Pg16 для ввода кабеля диаметром соответственно 6-14 и 8-16 мм	060-105966
Пломба	Для защиты от изменения настроек	060-105766
Верхняя крышка	Для увеличения класса защиты с IP33 до IP44	060-109766

Основные технические характеристики

Температура окружающей среды	От -40 до $65^{\circ} \mathrm{C}$ (кратковременно до $80^{\circ} \mathrm{C}$)
Диапазон температур регулируемой среды	От -40 до $100^{\circ} \mathrm{C}$
Переключатель	Однополюсный SPDT
Контактная нагрузка	Перемен. ток: AC1: $10 \mathrm{~A}, 440 \mathrm{~B} ;$ AC3: $6 \mathrm{~A}, 440 \mathrm{~B} ;$ AC15: $4 \mathrm{~A}, 440 \mathrm{~B}$
Кабельное соединение	Пост. ток: DC13: $12 \mathrm{Bt}, 220 \mathrm{~B}$
Класс защиты	Кабельный ввод Pg13.5 для кабеля, диаметр 6-14 мм Кабельный ввод Pg16 для кабеля, диаметр 8-16 мм

Контактная
группа

Устройство

1. Шпиндель настройки давления
2. Шпиндель настройки дифференциала
3. Рычаг
4. Основная настроечная пружина
5. Настроечная пружина дифференциала
6. Сильфон
7. Штуцер отбора давления
8. Контактная группа
9. Клеммная панель
10. Заземление
11. Кабельный ввод
12. Омегаобразная пружина
13. Стопорный винт

Габаритные и присоединительные размеры

Прессостаты KPI 35 и KPI 36

[^2]

Монтажные отверстия на задней стенке KPI 35 и KPI 36

[^3]Техническое описание

Реле разности давлений типа RT

Описание и область применения

Реле разности давлений типа RT предназначены для систем контроля в различных отраслях промышленности, в частности в системах защиты насосов. Реле этой серии отличаются высокой надежностью и могут работать в самых суровых условиях окружающей среды. Номенклатура включает в себя приборы с нейтральной зоной, которые сигнализируют об отключении давления как в меньшую, так и в большую сторону.

Номенклатура и коды для оформления заказа

Тип	Настраиваемая разность давлений, бар	Дифференциал, бар	Настраиваемая нейтральная зона	Рабочий диапазон, бар	Макс. раб. давление, бар	Испытательное давление, бар	Резьба патрубка подвода давлений	Кодовый номер
RT 266 AL	0-0,9	0,05	0,05-0,23	-1-6	7	8	G $3 / 8 \mathrm{~A}^{1)}$	017D008166
RT 263 AL	0,1-1,0	0,05	0,05-0,23	-1-6	7	8	$\mathrm{G} 3 / 8 \mathrm{~A}^{1}$	017D004566
RT 262 AL	0,1-1,5	0,1	0,1-0,33	-1-9	11	13	$\mathrm{G} 3 / 8 \mathrm{~A}^{1)}$	017D004366
RT 262 A	0,1-1,5	0,1		-1-9	11	13	$\mathrm{G} 3 / 8 \mathrm{~A}^{1)}$	017D002566
RT 262 A ${ }^{\text {2) }}$	0-0,3	0,035		-1-10	11	13	G $3 / 8 \mathrm{~A}^{1)}$	017D002766²)
RT 260 AL	0,5-4	0,3	0,3-0,9	-1-18	22	25	$\mathrm{G} 3 / 8 \mathrm{~A}^{1)}$	017D004866
RT 260 A	0,5-4	0,3		-1-18	22	25	$\mathrm{G} 3 / 8 \mathrm{~A}^{1)}$	017D002166
RT 260 A	0,5-6	0,5		-1-36	42	47	G $3 / 8 \mathrm{~A}^{1)}$	017D002366
RT 260 A	1,5-11	0,5		-1-31	42	47	$\mathrm{G} 3 / 8 \mathrm{~A}^{1)}$	017D002466
RT 265 A ${ }^{3}$	1-6	0,5		-1-36	42	47	$\mathrm{G} 3 / 8 \mathrm{~A}^{1)}$	017D0072663)

[^4]Реле давления с выключателями SPDT
При уменьшении разности давлений ниже заданного значения контакты 1-2 замыкаются, а 1-4 размыкаются (позиция I на рисунке).

При увеличении разности давлений выше заданного значения плюс дифференциал контакты 1-4 замыкаются, а 1-2 размыкаются (позиция II).

Принцип действия реле давления с выключателями SPDT

Значение уставки	-----	Дифференциал	
Разность давлений	$\sim \Omega$		

Реле давления с устанавливаемой нейтральной зоной (выключатели SPDTNP) При увеличении разности давлений выше заданного значения плюс дифференциал контакты 1-4 замыкаются. При уменьшении разности давлений ниже заданного значения контакты 1-4 размыкаются (рисунок ниже).

При понижении давления ниже значения нейтральной зоны минус дифференциал контакты 1-2 замыкаются. Когда давление возрастает на значение дифференциала, контакты 1-2 размыкаются. В нейтральной зоне (рисунок ниже, позиция а) контакты 1-2 и 1-4 остаются разомкнутыми.

Значение уставки	-----	Дифференциал	$\boxed{\square} /{ }^{2} / \wedge$
Разность давлений	$\Omega \Omega$	Нейтральная зона	a

Выбор реле давления

Пример 1.

Дано:

Необходимо произвести очистку фильтра, когда перепад давлений на нем составит 1,3 бар. Статическое давление фильтра 10 бар.

Решение:

Выбираем RT 260A. (RT 262A имеет давление 6 бар в секции низкого давления, поэтому его использовать нельзя.)
Необходимо подать сигнал при превышении необходимого перепада давлений, следовательно, устанавливаем перепад давлений:
1,3-0,3 = 1,0 бар.

Пример 2.

Дано:

Необходимо поддерживать постоянное давление за циркуляционным насосом 10 м водяного столба. Статическое давление составляет 4 бар.

Решение:

Выбираем реле давления RT 262AL и устанавливаем диск перепада давлений (5) на:
1,0-0,1 = 0,9 бар,

где 0,1 бар - фиксированный дифференциал. Диск нейтральной зоны остается с заводской настройкой (красная метка).

Настройка реле давления Перед настройкой необходимо снять переднюю крышку. Настройка производится при помощи диска (5). При этом устанавливаемое значение можно контролировать по шкале (9) индикатора. Реле давления имеет постоянный дифференциал. В случае использования RT-L необходимо установить значение нейтральной зоны.

Внимание!

При установке коннектор для более низкого давления (НД) обязательно должен находиться сверху.

Диаграммы для определения значений дифференциала и нейтральной зоны

NZ= Нейтральная зона/ мертвая зона
RT262AL

Дифференциал

NZ= Нейтральная зона/ мертвая зона
RT266AL

$$
\text { 5ap } \underset{\sim}{0.250 .2} 0.0_{1}
$$

Дифференциал $\triangle / V_{3}|2\rangle \Delta$
Позиция

Монтаж реле давления

Габаритные и присоединительные размеры

Реле давления RT имеет два монтажных отверстия и может монтироваться в любом положении. Монтаж осуществляется динамометрическим ключом. RT, оснащенные выключателями 017-0181, устанавливаются настроечной рукояткой вверх (рис. а). При монтаже реле давления перепада давлений низконапорная

сторона (отмеченная LP) должна устанавливаться в верхнем положении. Если реле давления подвержено вибрации, то рекомендуется его устанавливать присоединительными штуцерами для кабеля вниз (рис. б).

Рис. а

Рис. б

Приложение

Некоторые практические вопросы применения регуляторов ECL Comfort

Принцип регулирования контура отопления

Принципы регулирования контура отопления
(продолжение)

Принцип организации регулирования в регуляторах ECL Comfort демонстрируется на примере отопительного контура (см. рис. на стр. 117), поддерживаемого, например, картами P30, C66, C62.
В основу положено вычисление в регуляторе заданного значения температуры подаваемого теплоносителя $\mathrm{T}_{\text {зад. под. по температурному }}$ графику с последующей корректировкой этой величины в элементах суммирования в соответствии с сервисными установками. В последнем элементе суммирования вычисляется разность E (рассогласование системы) между откорректированным значением $\mathrm{T}_{\text {зад. под. }}$ и фактическим значением $\mathrm{T}_{\text {под, }}$ которая обрабатывается по ПИ-закону и определяет знак и продолжительность импульсов питания 3-позиционного привода. Эти импульсы вызывают перемещение клапана, стремящееся сравнять значения $\mathrm{T}_{\text {зад.под. }}$ и $\mathrm{T}_{\text {под. }}$ В нормально работающей системе фактическая температура $\mathrm{T}_{\text {под. }}$ колеблется относительно $\mathrm{T}_{\text {зад. под. }}$ в пределах коридора шириной, близкой к установленной величине нейтральной зоны. Математическое описание температурного графика соответствует приведенной на рисунке формуле и задается заданной комнатной температурой $\mathrm{T}_{\text {зад. комн. }}$, наклоном графика H, смещением графика P, а также уровнями максимального и минимального ограничения температуры подаваемого теплоносителя. При соответствии фактических теплотехнических характеристик здания выбранному температурному графику в здании автоматически будет поддерживаться температура, равная $\mathrm{T}_{\text {зад. комн. }}$

Следует иметь в виду, что пользователь для указания режима в контурах отопления указывает в первую очередь значение заданной комнатной температуры $\mathrm{T}_{\text {зад. комн. }}$ (строки A или С желтой стороны карт С30, С66 и т. д.) даже в тех случаях, когда датчик комнатной температуры не подключен. Фактически это задает используемый температурный график. Приведенное семейство температурных графиков, помещенное в описаниях всех регуляторов, соответствует $\mathrm{T}_{\text {зад. комн. }}=20^{\circ} \mathrm{C}$. Из указанного следует, что во всех случаях обязательным является присутствие датчика температуры подаваемого теплоносителя применяемого контура $\left(S_{3}, S_{5}\right)$. Подключение датчика наружной температуры S_{1} необходимо в контурах отопления для поддержания температурного графика.
Необходимость подключения прочих датчиков определяется необходимостью реализации функций, задаваемых соответствующими сервисными установками.
Указанный принцип справедлив также для контуров ГВС, приточных вентустановок, систем с накопительными баками и котельными установками с учетом специфики применения датчиков в Приложении. Основное отличие состоит в том, что температура регулируемого параметра задается непосредственно. Погодный компенсатор ECL Comfort обеспечивает ПИ-закон управления.

Ввод задания и управление

- Для установки задания оператором, как правило, предназначен экран A и/или С меню желтой стороны любой прикладной карты.
- Для контуров отопления пользователь задает комнатную температуру (даже при отсутствии датчика комнатной температуры), определяющую положение температурного графика. Это задание устанавливается отдельно для комфортного и экономичного режимов.
- Уставка температуры подачи, вычисленная по графику, изменяется при необходимости в соответствии с корректирующими факторами, заданными сервисными установками.
- Для ГВС непосредственно задается значение температуры теплоносителя, которое также подвержено влиянию корректирующих факторов для комфортного и экономичного режимов.
- Рассогласование между уставкой температуры подачи и ее фактическим значением обрабатывается регулятором и непосредственно определяет выходное управляющее воздействие регулятора на исполнительный механизм и поведение всей системы.
- Воздействие определяется ПИ-законом, чему соответствуют один длинный импульс управления, пропорциональный рассогласованию, и серия коротких, интегрирующих импульсов, «доводящих» рассогласование до величины «нейтральной» зоны.
- Регулятор «выбирает» для передачи воздействия на привод тот физический выход (открыть/закрыть клапан), который будет уменьшать рассогласование.

Особенности регулирования приточной вентиляционной установки

Для приточных установок используется понятие «балансная температура», которая в простейшем случае совпадает с заданием и изменяется при появлении компенсирующих факторов (комнатная и наружная температура ит.д.). Балансная температура - $\mathrm{T}_{\text {bal }}$, заданная температура воздуха (помещения или воздуховода) - $\mathrm{T}_{\text {f sp }}$ фактическая температура помещения - $\mathrm{T}_{\text {room }}$ и заданная температура

помещения $\mathrm{T}_{\text {room sp }}$ связаны между собой соотношением:

$$
\mathrm{T}_{\text {fl sp }}=\mathrm{T}_{\text {bal }}-\left(\mathrm{T}_{\text {room }}-\mathrm{T}_{\text {room sp }}\right)^{*} \kappa 3,
$$

где к3 - степень влияния температуры в помещении, параметр 3 меню серой стороны карты.
При отсутствии комнатного датчика задание температуры относится к датчику температуры воздуховода.

Основные факторы, корректирующие уставку регулятора
А. Граница отключения отопления, строка 1.
Б. Мин./макс. границы, строка 2.
В. Влияние температуры воздуха в помещении, строка 3.
Г. Погодозависимое снижение температуры, строка 1.
Д. Параметры оптимизации переключения режима, строки $12,13,14,20$.
Е. Взаимозависимость контуров, строки 17, 43, 52.
Ж. Температура возвращаемого теплоносителя, строки 30, 31, 32, 33, 34, 35, 36, 37.
3. Прочие.

Задание параметров температурного графика в регуляторе ECL Comfort

Исходные данные
(фрагмент температурного графика, заданного для теплового пункта в табличном виде)

Температура наружного воздуха, ${ }^{\circ}$ C	Xxxxxxx	Температура в систему отопления, ${ }^{\circ} \mathrm{C}$	$\mathbf{x x X x X X X X}$	Температура из системы отопления, ${ }^{\circ} \mathrm{C}$	XXXXXXXXXXXXXXxXX
xx		xx		xx	
0 (A)		40 (C)		26	
xx		xx		xx	
xx		xx		xx	
-25 (B)		82 (D)		58	

Наклон температурного графика равен: (D-C)/(A-B).
Полученный результат округляется до десятых и устанавливается в параметре наклона строки С серой стороны карты. Строки температурного графика выбираются по усмотрению пользователя и должны перекрывать наиболее вероятный диапазон рабочих наружных температур. Снять сервисными

настройками влияние датчиков обратной и комнатной температур, приоритетов, ограничения расхода. При текущей наружной температуре сравнить величину уставки подачи, рассчитываемую регулятором с температурой подачи и требуемую температурным графиком. Изменяя параметр смещения графика (строка С серой стороны), добиться совпадения указанных величин.

Изменяя параметр смещения графика (строка С серой стороны), добиться совпадения указанных величин.
В результате реальной эксплуатации может оказаться, что температура в помещении не выдерживается постоянной в диапазоне наружных температур. Если при низких температурах наблюдается перетоп, а при высоких недотоп, то следует уменьшить крутизну графика и выставить его смещение. При обратной картине следует увеличить крутизну.

Контроль значений уставок

Экран B серой стороны карточки дает информацию, необходимую для диагностики системы.
Разница между фактической и заданной температурами теплоносителя (рассогласование) должна колебаться в пределах, близких к установленной ширине нейтральной зоны (параметр 7 серой стороны карты). Соответственно визуально можно наблюдать колебания клапана около среднего положения.
Большая или «замерзшая» величина рассогласования говорит о неисправности системы.
Уставка на обратную температуру показывает текущее значение уровня ограничения возвращаемого теплоносителя.

Имитация/проверка входных цепей

Имитатор датчиков температуры				
Номинал R1, Ом	1000	820	1000	910
Номинал R2, Oм	500	500	500	200
Диапазон, ${ }^{\circ} \mathrm{C}$	$\begin{array}{\|c\|} \hline \text { от } 0 \text { до } \\ 130 \\ \hline \end{array}$	$\begin{aligned} & \text { от }-46 \\ & \text { qo }+84 \end{aligned}$	$\begin{gathered} \text { от } 0 \\ \text { до }+52 \end{gathered}$	от -23 до +29
Применение	$\begin{aligned} & \text { T-ра } \\ & \text { воды } \end{aligned}$	$\begin{gathered} \text { T-ра } \\ \text { наруж- } \\ \text { ная } \\ \hline \end{gathered}$	T-ра помещения	T-pa охладителя, помещения

Позволяет сымитировать ситуацию на объекте, проверить реакцию регулятора на изменения температур, качественно проверить работоспособность внутренней логики регулятора.

Для оценки метрологических характеристик можно применять «эталонные» резисторы на фиксированные температуры или сравнивать показания регулятора, подключенного к объекту, с показаниями местных показывающих термометров.
Обрыв или отсутствие датчика индицируется двумя черточками на месте показаний температуры, короткое замыкание - тремя черточками.
Датчик температуры регулятора ECL Comfort - это прибор сопротивления с характеристикой Pt 1000, описываемой уравнением:

$$
\mathrm{R}_{\text {Д }}=1000+3,85 \times \mathrm{t}(\mathrm{Oм}) ;
$$

где t - температура окружающей среды в ${ }^{\circ} \mathrm{C}$, $\mathrm{R}_{\text {д }}$ - текущее сопротивление датчика. Исправность датчика можно проверить измерением его электрического сопротивления с помощью цифрового мультиметра, которое должно соответствовать приведенной формуле при фактической температуре датчика.

Проверка выходных цепей управления приводом клапана

Схема используется для автономной проверки работоспособности выходных управляющих ключей. Перевести регулятор в ручной режим, выбрать с помощью кнопки Привод проверяемого контура и

подавать команды кнопками «+» и «-».
При этом лампы должны раздельно включаться при подаче команд на открытие или закрытие клапана. Поступление команды индицируется на экране пункта В меню в виде треугольника, направленного вверх или вниз, что соответствует открытию или закрытию клапана.
Лампа Л - 220 В, мощность не более 35 Вт. Лампа может быть заменена стрелочным вольтметром. Цифровой вольтметр не использовать.
Для проверки регулятора, подключенного к ИТП в ручном режиме, подавать команды на привод с визуальным контролем движения привода. При сомнениях в работоспособности привода подключить лампы на место полуобмоток двигателя привода. При этом проверяются также правильность схемы и исправность соединительных линий.

Внимание!

Обращать внимание на правильность передачи команд «вверх» и «вниз» на привод клапана.

Особенности применения приводов

Приводы принимают от регулятора управляющие импульсные сигналы по двум каналам: вверх и вниз.

При разборе нештатных ситуаций необходимо помнить, что трехходовые клапаны могут повышать температуру в системе при движении штока вниз, например, VF3, VRG3, VRB3. Двухходовые клапаны, как правило, открываются при подъеме штока, повышая температуру (см. документацию).

Автономно работу привода можно проверить подачей напряжения питания на каждую из полуобмоток мотора.
Встроенные микропереключатели обеспечивают защиту двигателя от перегрузок при достижении крайних положений или превышении допустимого усилия. При диагностике системы следует проверять исправность концевых выключателей и их функционирование визуально при открытой крышке привода. Приводы с защитной пружиной требуют для питания держателя пружины фазного напряжения (см. схему в каталоге). Перед установкой привода пружина должна быть взведена. При проверке необходимо проверять полноту хода штока комбинации привод-клапан. Укороченный в сравнении с паспортным ход штока или заедание в промежуточном положении могут быть вызваны механическими повреждениями, ошибкой монтажа, попаданием постороннего предмета в седло клапана.

Особенности

 подключения регулятора ECL Comfort к внешним схемам
внимание!

Следует избегать поступления на контакты $3,4,6,7$ регулятора ECL Comfort, находящегося в автоматическом режиме, фазного напряжения из внешних схем во избежание вероятного повреждения выходных ключей регулятора.

Источником подачи фазы на выход регулятора ECL Comfort могут быть, например, внешние схемы реализации ручного управления приводами или защитные термостаты для принудительного перемещения клапана в аварийной ситуации. В этих схемах необходимо предусмотреть отключение выходов регулятора перед подачей команд на привод.

В приводах серии AMV 4xx/6xx имеются встроенные органы ручного управления приводом, подающие напряжение фазы на входы мотора и одновременно на выходы регулятора ECL Comfort. При работе с этими приводами недопустима одновременная работа регулятора в автоматическом режиме и управление приводом в ручном режиме. Рекомендуется ручное управление приводом осуществлять только через регулятор, а переключатель привода держать в положении «Авто».

Проверка выходных цепей управления насосами

Схема используется для автономной проверки работоспособности контактов выходных управляющих реле. Перевести регулятор в ручной режим, выбрать с помощью кнопки © проверяемый насос и подавать команды кнопками «+» и «-». При этом лампы должны раздельно включаться при подаче команд на включение насоса. Поступление команды индицируется на экране пункта B меню в виде индикатора ON, что соответствует включению насоса.
Лампа Л - 220 В (максимальный ток контакта, 2 А на индуктивную нагрузку). Лампа может быть заменена омметром или мультиметром. Для проверки цепей регулятора, подключенного к ИТП, в ручном режиме подавать команды на привод с визуальным контролем работы насоса. При сомнениях в работоспособности насоса подключить лампы на место насоса или его контактора. При этом проверяется также правильность схемы и исправность соединительных линий.
Следует учитывать, что реле имеют нормально замкнутые контакты и при обесточивании регулятора на насосы подаются команды на включение.

Практическая комплексная проверка компонентов системы на объекте

Проверка подключенного к объекту монтажного блока при неустановленном регуляторе

Контакты	Оборудование	Действие
$1-2$	Вольтметр, неоновый пробник	Контроль напряжения питания и фазировки
$5-3$	Перемычка	Движение клапана контура 1 вверх
$5-4$	Перемычка	Движение клапана контура 1 вниз
$8-6$	Перемычка	Движение клапана контура 2 вверх
$8-7$	Перемычка	Движение клапана контура 2 вниз
$9-10$	Перемычка	Включение насоса реле 1
$11-12$	Перемычка	Включение насоса реле 2
$13-14$	Перемычка	Включение насоса реле 3
$16-17$	Омметр	Наружная температура*
$16-18$	Омметр	Температура S2*
$16-19$	Омметр	Температура S3*
$16-20$	Омметр	Температура S4*
$16-21$	Омметр	Температура S5*
$16-22$	Омметр	Температура S6*
$15 \ldots 22-$	Омметр	Более 20 мОм
«земля»	ПК232/LON	ПК с тестовым ПО

* Температура вычисляется по формуле: $T=\left(R_{\partial}-1000\right) / 3,85\left({ }^{\circ} \mathrm{C}\right)$; где R_{∂} - измеренное сопротивление для сопоставления с показаниями контроллера.

Результаты анализируются на основе прикладной электрической схемы подключения (см. описание карты), проекта электротехнической части и показаний местных приборов.

Некоторые типичные нештатные ситуации в контурах тепловых пунктов

Симптомы	Возможные причины
Регулятор вырабатывает импульсы на открытие; температура подачи ниже требуемой	1. Сетевые параметры (давление, температура) ниже проектной нормы 2. Клапан заклинил в промежуточной части хода или засор трубопровода 3. Повреждение полуобмотки двигателя привода, повреждение выхода контроллера или обрыв провода управления
Температура теплоносителя подачи и уставка ниже нормы	1. Завышение температуры обратной приводит к снижению уставки на подачу 2. Неправильные параметры температурного графика
Резкие колебания клапана в одном из крайних положений	Неисправность привода
Система «раскачивается» с большой амплитудой (более $10^{\circ} \mathrm{C}$)	1. Ошибка в фазировке подключения привода 2. Неправильный выбор зоны пропорциональности, времени интегрирования 3. Большое расстояние от теплообменника до датчика подачи или медленный привод (ГВС)
Температура теплоносителя внезапно меняется	Временной график переключения «комфортныйэкономичный» нарушен
Непредсказуемое поведение регулятора	Загруженная карточка не соответствует фактическому приложению

Некоторые типичные нештатные ситуации в контурах тепловых пунктов

Симптомы	Возможные причины
Температура не соответствует требуемой; клапан неподвижен	Отказ регулятора или привода; повреждение линий связи
Температура теплоносителя падает, клапан закрыт, регулятор выдает команду на закрытие. Температура обратной высокая	Система с теплообменником. Из-за завышения обратной температуры клапан в первичном контуре закрылся, циркуляция прекратилась. Из-за теплоизоляции и удаленного размещения датчика обратной от выхода теплообменника датчик продолжает показывать завышение обратной. Для исключения подавать сигнал закрытия клапана через дополнительный концевой переключатель, настроенный на небольшой процент открытия клапана, или размещать датчик обратной вблизи теплообменника, частично удалить теплоизоляцию для ускорения остывания датчика
Экран регулятора мигает	Регулятор ECL Comfort 301 с картой L66. Текущее сопротивление датчика S_{2} близко к 1 или 1,3 кОм, что соответствует аварии насосов по 1-му или 2-му контурам. Действовать согласно Инструкций по работе с картой L66
Регулятор вырабатывает импульсы на закрытие клапана, клапан не доходит до закрытого положения, температура завышена	1. Перепад давлений превышает допустимый для выбранного типа клапана 2. Заклинивание клапана посторонним предметом
Система не обеспечивает нужный режим	1. Чрезмерное влияние корректирующих факторов, таких, как температура обратного теплоносителя, комнатная температура, приоритет контура и т. д. 2. Выбор установок сервисного меню не соответствует условиям работы и поставленным целям
Отсутствует связь с верхним уровнем	1. Повреждение линий связи 2. Проблемы в программном обеспечении верхнего уровня

Этапы разбора нештатных ситуаций (вариант)

Проверка общей работоспособности регуля-
тора ECL Comfort. Навигация по меню, чтение/ запись установок.
Контроль температурных каналов.
Соответствие показаний фактическим; проверка соединений.
Прохождение управляющих команд в ручном режиме. Схемы внешних соединений.
Корректность уставок при снятых корректирующих факторах* в автоматических режимах. Анализ соотношения величин уставок и фактических значений. Уточнение сервисных установок.
Корректность работы в автоматическом режиме при включенных корректирующих факторах.

* Корректирующие факторы снимаются установкой соответствующих сервисных параметров или отключением соответствующих датчиков.
Этапы разбора нештатных ситуаций (вариант)

Центральный офис • 000 «Данфосс»

Россия, 143581, Московская обл., Истринский р-н, с. Павловская Слобода, д. Лешково, 217. Телефон: (495) 792-57-57. Факс: (495) 792-57-59. E-mail: he@danfoss.ru

Региональные представительства

Владивосток
Волгоград
Воронеж
Екатеринбург
Казань
Калининград
Красноярск
Нижний Новгород
Новосибирск
Омск
Пермь
Ростов-на-Дону
Самара
Санкт-Петербург
Уфа
Хабаровск
Ярославль

тел./факс: (4232) 20-45-10
тел./факс: (8442) 33-00-62
тел./факс: (4732) 96-95-85
тел./факс: (343) 365-83-79
тел./факс: (843) 264-66-34
тел./факс: (911) 850-71-27
тел./факс: (3912) 23-72-64
тел./факс: (8312) 78-61-86 тел./факс: (383) 222-58-60
тел./факс: (3812) 24-82-71
тел./факс: (342) 239-07-08
тел./факс: (863) 250-21-32
тел./факс: (846) 270-62-40
тел./факс: (812) 320-20-99
тел./факс: (3472) 23-91-00
тел./факс: (4212) 31-87-49
тел./факс: (0852) 73-49-98

Компания «Данфосс» не несет ответственности за опечатки в каталогах, брошюрах и

других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые марки в этом материале являются собственностью соответствующих компаний. «Данфосс», логотип «Danfoss» являются торговыми марками компании ООО «Данфосс». Все права защищены.

www.danfoss.ru

[^0]: Совместимость с другими модулями: ECA 60, ECA 63, ECA 73, ECA 80, ECA 88

[^1]: * Кабели не включены в комплект

[^2]: Стенной кронштейн

[^3]: Угловая скоба

[^4]: Сниппелем под приварку, \varnothing 6/10 мм
 2) Контакты не мгновенного действия.
 3) С контактами SPST, SPDT для сигнализации и отключения от 0,8 до 1 бар.

