Инструкция

ECL Comfort 210 / 310, приложение A275 / A375

1.0 Содержание

1.0 Содержание1
1.1 Важная информация по безопасности и эксплуатации 2
2.0 Установка 5
2.1 Перед началом работы. 5
2.2 Определение типа системы 19
2.3 Установка 43
2.4 Размещение температурных датчиков 46
2.5 Электрические соединения 48
2.6 Вставка ключа программирования ECL 78
2.7 Список проверочных операций 83
2.8 Навигация, ключ программирования ECL A275 84
3.0 Ежедневное использование 92
3.1 Переход по меню 92
3.2 Чтение дисплея регулятора 93
3.3 Общий обзор: Что означают данные символы? 97
3.4 Контроль температур и компонентов системы 98
3.5 Обзор влияния 100
3.6 Ручное управление 101
3.7 Расписание 102
4.0 Обзор настроек 104
5.0 Параметры, контур 1 107
5.1 Температура подачи (котла) 107
5.2 Ограничение комнатной 110
5.3 Ограничение обратного 112
5.4 Оптимизация 115
5.5 Котел 119
5.6 Описание и область применения 124
6.0 Параметры, контур 2 129
6.1 Температура подачи 129
6.2 Температура в баке-аккумуляторе 131
6.3 Ограничение комнатной 133
6.4 Ограничение обратного 135
6.5 Оптимизация 138
6.6 Параметры управления 142
6.7 Описание и область применения 145
6.8 Антибактериальная функция 151
6.9 Авария 153
7.0 Настройки, контур 3 155
7.1 Температура в баке-аккумуляторе 155
7.2 Описание и область применения 157
7.3 Антибактериальная функция 160
8.0 Общие настройки регулятора 162
8.1 Описание «Общих настроек регулятора» 162
8.2 Время и дата 163
8.3 Праздничный день 164
8.4 Обзор входа 167
8.5 Журнал 168
8.6 Управление выходом 170
8.7 Функции ключа 171
8.8 Система 172
9.0 Дополнительно 177
9.1 Несколько регуляторов в одной системе 177
9.2 Часто задаваемые вопросы 179
9.3 Терминология 181

1.1 Важная информация по безопасности и эксплуатации

1.1.1 Важная информация по безопасности и эксплуатации

В данном руководстве по установке описывается работа с ключом программирования ECL A275 (кодовый номер для заказа 087H3814).

Ключ ECL A275 содержит два комплекта настроек приложений: один комплект для A275 (A275.1 / A275.2 / A275.3) и еще один комплект для A375 (A375.1 / A375.2 / A375.3).

Приложения A275 предназначены для решений с одной горелкой.
Приложения A375 предназначены для решений с несколькими горелками.

Функции могут быть осуществлены:
ECL Comfort 210 (A275) для простых решений или
ECL Comfort 310 (A275 / A375) для расширенных решений, например, связь через M-bus, Modbus и Ethernet (Internet).

Приложение A275 совместимо с программным обеспечением регуляторов ECL Comfort 210 и 310 версии 1.11 (можно увидеть при запуске регулятора и в "Общих настройках регулятора", меню "Система").

Более подробная документация к ECL Comfort 210 и дополнительному оборудованию доступна по адресу: www.ecl.doc.danfoss.com.

Навигация, A275 / А375. Основные принципы работы:

A275.1 / A375.1	A275.2 / A375.2		A275.3 / A375.3		
Контур	Контур		Контур		
1	1	2	1	2	3
IIII	IIII	工	IIII	IIII	$\xrightarrow{\square}$

Обзор управления горелкой:

Более подробные сведения см. в разделе "Электрические соединения".

4

Примечания по технике безопасности

Во избежание получения травм или повреждений устройства обязательно прочитайте настоящую инструкцию и тщательно ее соблюдайте.

Все необходимые работы по сборке, вводу в эксплуатацию и техническому обслуживанию оборудования должны выполняться только квалифицированным персоналом, имеющим соответствующее разрешение.

Данный предупреждающий знак используется для выделения особых условий, о которых нужно помнить.

की

Автоматическое обновление программного обеспечения регулятора:
Программное обеспечение регулятора обновляется автоматически при вводе ключа (аналогично регулятору версии 1.11). Во время обновления программного обеспечения отображается следующее:

Индикатор выполнения
В процессе обновления:

- Не вынимайте КЛЮЧ
- Не отключайте питание

Данный знак указывает на то, что выделенную информацию необходимо прочитать с особым вниманием.

В данном руководстве пользователя описано несколько типов систем, особые системные установки для которых помечены типом системы. Все типы систем приведены в главе "Определение типа системы".

${ }^{\circ} \mathrm{C}$ (градусы Цельсия) - это значение измеряемой температуры, а K (градусы Кельвина) - это количество градусов.

∞			
Номер идентификатора уникален для каждого отдельного параметра.			
Пример	Первая цифра	Вторая цифра	Последние три цифры
11174	1	1	174
	-	Контур 1	Номер параметра
12174	1	2	174
	-	Контур 2	Номер параметра
Если описание идентификатора встречается более одного раза, это означает, что для некоторых типов системы имеются отдельные установки. В таком случае отдельно указывается тип системы (например, 12174-A266.9).			

Правила утилизации
Перед переработкой или утилизацией следует
разобрать это устройство и рассортировать его
элементы по группам материалов.
Всегда соблюдайте правила по утилизации.

2.0 Установка

2.1 Перед началом работы

Приложение A275.1 весьма разнообразно. Основные принципы работы:

Отопление (контур 1):

Обычно температура котла задается в соответствии с вашими требованиями. Датчик температуры котла S3 является наиболее
важным датчиком. Он должен устанавливаться надлежащим образом для обеспечения измерения температуры котла. Требуемая температура котла S3 рассчитывается регулятором ECL на основе температуры наружного воздуха (S1). Чем ниже температура наружного воздуха, тем выше требуемая температура котла. Температура котла также является температурой подачи в контуре отопления прямого присоединения.

В соответствии с недельной программой (до 3 "Комфортных" периодов/дней) контур отопления может быть переключен в режим комфорта или экономии (два разных температурных значения для требуемой комнатной температуры). В режиме экономии может быть выбрана функция "Полный останов" для выключения отопления.

Горелка включается, когда температура котла ниже, чем требуемая температура котла, и выключается, когда температура котла выше, чем требуемая температура котла. Разница переключения определяет включение / выключение. Кроме того, функция защиты котла включает циркуляционный насос, только если температура котла поднимается выше минимальной температуры. Для горелки может быть установлено минимальное время включения для увеличения КПД котла.

Температура обратки (S5) для котла не должна быть слишком высокой (конденсационный котел) или слишком низкой (жидкотопливный или газовый котел). В таком случае требуемая температура котла может быть уменьшена или увеличена. Кроме того, ограничение температуры обратки зависит от температуры наружного воздуха. Обычно чем ниже температура наружного воздуха, тем выше порог допустимой температуры обратки.

Если измеряемая комнатная температура (измеряемая с помощью S7 или устройства удаленного управления ECA 30) не равна требуемой комнатной температуре, требуемая температура котла также может быть изменена.

Циркуляционный насос (P1) включается при включении отопления или для защиты от замерзания.

Отопление может отключаться, если температура наружного воздуха поднимается выше установленного значения.

Стандартное приложение А275.1:

* Разгрузочный клапан

Представленная схема является лишь принципиальной и не содержит всех компонентов, которые могут оказаться в вашей системе.

Все перечисленные компоненты подключаются к регулятору ECL Comfort.

Список компонентов:
S1 Датчик температуры наружного воздуха
S3 Датчик температуры котла
S5 Датчик температуры обратки
S7 Датчик комнатной температуры / ECA 30
P1 Циркуляционный насос
B1 Горелка
A1 Авария

В регулятор предварительно вводятся заводские настройки, которые приведены в соответствующих разделах данного руководства.

Приложение А275.2 весьма разнообразно. Основные принципы работы:

Отопление (контур 1):

Обычно температура котла задается в соответствии с вашими требованиями. Датчик температуры котла S3 является наиболее
важным датчиком. Он должен устанавливаться надлежащим образом для обеспечения измерения температуры котла. Требуемая температура котла S 3 рассчитывается регулятором ECL на основе температуры наружного воздуха (S1). Чем ниже температура наружного воздуха, тем выше требуемая температура котла. Температура котла также является температурой подачи в контуре отопления прямого присоединения.

В соответствии с недельной программой (до 3 "Комфортных" периодов/дней) контур отопления может быть переключен в режим комфорта или экономии (два разных температурных значения для требуемой комнатной температуры). В режиме экономии может быть выбрана функция "Полный останов" для выключения отопления.

Горелка включается, когда температура котла ниже, чем требуемая температура котла, и выключается, когда температура котла выше, чем требуемая температура котла. Разница переключения определяет включение / выключение. Кроме того, функция защиты котла включает циркуляционный насос, только если температура котла поднимается выше минимальной температуры. Для горелки может быть установлено минимальное время включения для увеличения КПД котла.

Температура обратки (S5) для котла не должна быть слишком высокой (конденсационный котел) или слишком низкой (жидкотопливный или газовый котел). В таком случае требуемая температура котла может быть уменьшена или увеличена. Кроме того, ограничение температуры обратки зависит от температуры наружного воздуха. Обычно чем ниже температура наружного воздуха, тем выше порог допустимой температуры обратки.

Если измеряемая комнатная температура (измеряемая с помощью S7 или устройства удаленного управления ECA 30) не равна требуемой комнатной температуре, требуемая температура котла также может быть изменена.

Циркуляционный насос (P1) включается при включении отопления или для защиты от замерзания.

Отопление может отключаться, если температура наружного воздуха поднимается выше установленного значения.

Стандартное приложение А275.2:

* Разгрузочный клапан

50

Представленная схема является лишь принципиальной и не содержит всех компонентов, которые могут оказаться в вашей системе.

Все перечисленные компоненты подключаются к регулятору ECL Comfort.

Список компонентов:

S1 Датчик температуры наружного воздуха
S3 Датчик температуры котла
S5 Датчик температуры обратки
S6 Датчик температуры в баке ГВС
S7 Датчик комнатной температуры / ECA 30
P1 Циркуляционный насос, отопление
B1 Горелка
P3 Насос нагрева ГВС
А1 Авария

В регулятор предварительно вводятся заводские настройки, которые приведены в соответствующих разделах данного руководства.

Приложение A275.2 весьма разнообразно. Основные принципы работы:

ГВС (контур 2):

В соответствии с недельной программой (до 3 "Комфортных" периодов/дней) контур ГВС может быть переключен в режим комфорта или экономии (два разных температурных значения для требуемой температуры ГВС).

Если измеренная температура ГВС (S6) опускается ниже значения требуемой температуры ГВС, то начинается нагрев「ВС:

- Циркуляционный насос P1 в контуре отоления отключается.
- Насос нагрева ГВС РЗ включается.
- Требуемая температура котла на S3 увеличивается.

Как правило, требуемая температура котла на 10-15 градусов выше требуемой температуры ГВС.

Когда измеренная температура ГВС (S6) поднимается выше значения требуемой температуры ГВС, насос нагрева ГВС (P3) выключается. Разница начала и окончания определяет включение / выключение. Можно задать время пробега.

Возможен запуск антибактериальной функции в выбранные дни недели.

У нагрева ГВС есть приоритет, т.е. насос Р3 включен, а насос P1 выключен. Если в данном приложении присутствует предохранительный клапан (распределительный клапан) для нагрева ГВС, то циркуляционный насос P1 остается включенным при нагреве ГВС.

Стандартное приложение А275.2:

* Разгрузочный клапан

Представленная схема является лишь принципиальной и не содержит всех компонентов, которые могут оказаться в вашей системе.

Все перечисленные компоненты подключаются к регулятору ECL Comfort.

Список компонентов:
S1 Датчик температуры наружного воздуха
S3 Датчик температуры котла
S5 Датчик температуры обратки
S6 Датчик температуры в баке ГВС
S7 Датчик комнатной температуры / ECA 30
P1 Циркуляционный насос, отопление
B1 Горелка
P3 Насос нагрева ГВС
A1 Авария

В регулятор предварительно вводятся заводские настройки, которые приведены в соответствующих разделах данного руководства.

Приложение A275.3 весьма разнообразно. Основные принципы работы:

Отопление (контур 1):

Обычно температура котла задается в соответствии с вашими требованиями. Датчик температуры котла S3 является наиболее
важным датчиком. Он должен устанавливаться надлежащим образом для обеспечения измерения температуры котла. Требуемая температура котла S3 рассчитывается регулятором ECL на основе температуры наружного воздуха (S1). Чем ниже температура наружного воздуха, тем выше требуемая температура котла. Температура котла также является температурой подачи в контуре отопления прямого присоединения.

В соответствии с недельной программой (до 3 "Комфортных" периодов/дней) контур отопления может быть переключен в режим комфорта или экономии (два разных температурных значения для требуемой комнатной температуры). В режиме экономии может быть выбрана функция "Полный останов" для выключения отопления.

Горелка включается, когда температура котла ниже, чем требуемая температура котла, и выключается, когда температура котла выше, чем требуемая температура котла. Разница переключения определяет включение / выключение. Кроме того, функция защиты котла включает циркуляционный насос, только если температура котла поднимается выше минимальной температуры. Для горелки может быть установлено минимальное время включения для увеличения КПД котла.

Температура обратки (S5) для котла не должна быть слишком высокой (конденсационный котел) или слишком низкой (жидкотопливный или газовый котел). В таком случае требуемая температура котла может быть уменьшена или увеличена. Кроме того, ограничение температуры обратки зависит от температуры наружного воздуха. Обычно чем ниже температура наружного воздуха, тем выше порог допустимой температуры обратки.

Если измеряемая комнатная температура (измеряемая с помощью S7 или устройства удаленного управления ECA 30) не равна требуемой комнатной температуре, требуемая температура котла также может быть изменена.

Циркуляционный насос (P1) включается при включении отопления или для защиты от замерзания.

Отопление может отключаться, если температура наружного воздуха поднимается выше установленного значения.

Стандартное приложение A275.3:

* Разгрузочный клапан

Представленная схема является лишь принципиальной и не содержит всех компонентов, которые могут оказаться в вашей системе.

Все перечисленные компоненты подключаются к регулятору ECL Comfort.

Список компонентов:

S1 Датчик температуры наружного воздуха
S2 Датчик температуры обратки, контур 2
S3 Датчик температуры котла, контур 1
S4 Датчик температуры подачи, контур 2
S5 Датчик температуры обратки, контур 1
S6 Датчик температуры в баке ГВС
S7 Датчик комнатной температуры / ECA 30, контур 1
S8 Датчик комнатной температуры / ECA 30, контур 2
M2 Регулирующий клапан с электроприводом, контур 2
P1 Циркуляционный насос, контур 1
B1 Горелка
P3 Насос нагрева ГВС, контур 3
P4 Циркуляционный насос, контур 2

Приложение A275.3 весьма разнообразно. Основные принципы работы:

Отопление (контур 2):

Как правило, температура подачи задается в соответствии с вашими требованиями. Датчик температуры подачи S4 является наиболее важным датчиком. Требуемая температура подачи S4 рассчитывается регулятором ECL на основе температуры наружного воздуха (S1). Чем ниже температура наружного воздуха, тем выше требуемая температура подачи.

В соответствии с недельной программой (до 3 "Комфортных" периодов/дней) контур отопления может быть переключен в режим комфорта или экономии (два разных температурных значения для требуемой комнатной температуры). В режиме экономии может быть выбрана функция "Полный останов" для выключения отопления.

Регулирующий клапан с электроприводом M2 постепенно открывается, если температура подачи, S 4 , оказывается ниже требуемой температуры подачи и наоборот.

Требуемая температура подачи на S4 обычно определяет требуемую температуру котла (S3).

Температура обратки (S2) может быть ограничена. В таком случае требуемая температура подачи на S4 может быть уменьшена или увеличена.

Кроме того, ограничение температуры обратки зависит от температуры наружного воздуха. Обычно чем ниже температура наружного воздуха, тем выше порог допустимой температуры обратки.

Если измеряемая комнатная температура (измеряемая с помощью $\mathrm{S8}$ или устройства удаленного управления ECA 30) не равна требуемой комнатной температуре, требуемая температура котла также может быть изменена.

Циркуляционный насос (P4) включается при включении отопления или для защиты от замерзания.

Отопление может отключаться, когда температура наружного воздуха поднимается выше заданного значения или когда у нагрева ГВС есть приоритет.

Стандартное приложение А275.3:

* Разгрузочный клапан

5

Представленная схема является лишь принципиальной и не содержит всех компонентов, которые могут оказаться в вашей системе.

Все перечисленные компоненты подключаются к регулятору ECL Comfort.

Список компонентов:
S1 Датчик температуры наружного воздуха
S2 Датчик температуры обратки, контур 2
S3 Датчик температуры котла, контур 1
S4 Датчик температуры подачи, контур 2
S5 Датчик температуры обратки, контур 1
S6 Датчик температуры в баке ГВС
S7 Датчик комнатной температуры / ECA 30, контур 1
S8 Датчик комнатной температуры / ECA 30, контур 2
M2 Регулирующий клапан с электроприводом, контур 2
P1 Циркуляционный насос, контур 1
B1 Горелка
P3 Насос нагрева ГВС, контур 3
P4 Циркуляционный насос, контур 2

В регулятор предварительно вводятся заводские настройки, которые приведены в соответствующих разделах данного руководства.

Приложение A275.3 весьма разнообразно. Основные принципы работы:

ГВС (контур 3):

В соответствии с недельной программой (до 3 "Комфортных" периодов/дней) контур ГВС может быть переключен в режим комфорта или экономии (два разных температурных значения для требуемой температуры ГВС).

Если измеренная температура ГВС (S6) опускается ниже значения требуемой температуры ГВС, то начинается нагрев ГВС:

- Циркуляционный насос P1 в контуре отоления отключается.
- Насос нагрева ГВС РЗ включается.
- Требуемая температура котла на S3 увеличивается.

Как правило, требуемая температура котла на 10-15 градусов выше требуемой температуры ГВС.

Когда измеренная температура ГВС (S6) поднимается выше значения требуемой температуры ГВС, насос нагрева ГВС (Р3) выключается. Разница начала и окончания определяет включение / выключение. Можно задать время пробега.

Возможен запуск антибактериальной функции в выбранные дни недели.

У нагрева ГВС есть приоритет, т.е. насос P3 включен, а насос P1 выключен. Если в данном приложении присутствует предохранительный клапан (распределительный клапан) для нагрева ГВС, то циркуляционный насос P1 остается включенным при нагреве ГВС.

Стандартное приложение A275.3:

* Разгрузочный клапан

Представленная схема является лишь принципиальной и не содержит всех компонентов, которые могут оказаться в вашей системе.

Все перечисленные компоненты подключаются к регулятору ECL Comfort.

Список компонентов:
S1 Датчик температуры наружного воздуха
S2 Датчик температуры обратки, контур 2
S3 Датчик температуры котла, контур 1
S4 Датчик температуры подачи, контур 2
S5 Датчик температуры обратки, контур 1
S6 Датчик температуры в баке ГВС
S7 Датчик комнатной температуры / ECA 30, контур 1
S8 Датчик комнатной температуры / ECA 30, контур 2
M2 Регулирующий клапан с электроприводом, контур 2
P1 Циркуляционный насос, контур 1
B1 Горелка
P3 Насос нагрева ГВС, контур 3
P4 Циркуляционный насос, контур 2

S

В регулятор предварительно вводятся заводские настройки, которые приведены в соответствующих разделах данного руководства

Приложение A275. Основные принципы работы:

С помощью переключателя неиспользованный вход можно использовать для переключения программы в фиксированный режим комфорта или экономии.

Возможна установка связи с системой SCADA по шине Modbus.

Авария, A275.1 и A275.2:

Авария A1 (реле R4) и символ аварии (乞) могут быть использованы:

- при отсоединении/коротком замыкании датчика температуры или его соединений.

Авария, A275.3:

Символ аварии (乞) может быть использован:

- при отсоединении/коротком замыкании датчика температуры или его соединений.
- если действительная температура подачи на S4 (контур отопления 2), отличается от требуемой температуры подачи.

Приложение A375.1 весьма разнообразно. Основные принципы работы:
Приложения A375.1 / A375.2 / A375.3 могут управлять включением / выключением до 8 горелок.
В приложении A375.1 первые 4 горелки управляются реле в ECL 310. Максимум 4 следующих горелки управляются реле модуля расширения ECA 32 (расположенном в клеммной панели ECL
310).

Отопление (контур 1):

Обычно общая температура котла задается в соответствии с вашими требованиями. Датчик температуры котла S3 является наиболее важным датчиком. Он должен устанавливаться надлежащим образом для обеспечения измерения общей температуры котла. Требуемая температура котла S3 рассчитывается регулятором ECL на основе температуры наружного воздуха (S1). Чем ниже температура наружного воздуха, тем выше требуемая температура котла. Температура котла также является температурой подачи в контуре отопления прямого присоединения.
В соответствии с недельной программой (до 3 "Комфортных" периодов/дней) контур отопления может быть переключен в режим комфорта или экономии (два разных температурных значения для требуемой комнатной температуры). В режиме экономии может быть выбрана функция "Полный останов" для выключения отопления.
Первая ступень горелки включается, когда общая температура котла опускается ниже, чем требуемая температура котла. Регулятор контролирует общую температуру котла и включает следующую ступень горелки, если общая температура котла не увеличивается должным образом. Выключение ступеней горелки осуществляется в обратном порядке. Разница переключения определяет включение / выключение.

Управление горелками может осуществляться:

- в фиксированной последовательности (пример: всегда 1-2-3-4-5); или
- в автоматической сменяемой последовательности (пример: первый период: 1-2-3-4-5, второй период: 2-3-4-5-1, третий период: 3-4-5-1-2 и так далее);
- в полуавтоматической сменяемой последовательности (пример: первый период: 1, 2-3-4-5, второй период: 1, 3-4-5-2, третий период: 1, 4-5-2-3 и так далее).
Кроме того, функция защиты котла включает циркуляционный насос, когда температура котла поднимается выше минимального значения. Для горелки может быть установлено минимальное время включения для увеличения КПД котла. Температура обратки (S5) для котла не должна быть слишком высокой (конденсационный котел) или слишком низкой (жидкотопливный или газовый котел). В таком случае требуемая температура котла может быть уменьшена или увеличена. Кроме того, ограничение температуры обратки зависит от температуры наружного воздуха. Обычно чем ниже температура наружного воздуха, тем выше порог допустимой температуры обратки.
Если измеряемая комнатная температура (с помощью S7 или устройства удаленного управления ECA 30) не равна требуемой комнатной температуре, требуемая температура котла также может быть изменена.
Циркуляционный насос (P1) включается при включении отопления или для защиты от замерзания.
Отопление может отключаться, когда температура наружного воздуха поднимается выше установленного значения. Требуемая общая температура котла может через S10 контролироваться с помощью внешнего напряжения в диапазоне 0-10 В.

S0

Представленная схема является лишь принципиальной и не содержит всех компонентов, которые могут оказаться в вашей системе.

Все перечисленные компоненты подключаются к регулятору ECL Comfort.

Список компонентов:

S1 Датчик температуры наружного воздуха

S3 Датчик общей температуры котла
S5 Датчик температуры обратки
S7 Датчик комнатной температуры / ECA 30
(S10) (регулирование температуры наружного воздуха, не показано)
P1 Циркуляционный насос
В1-В8 Горелка 1 ... 8
A1 Авария

В регулятор предварительно вводятся заводские настройки, которые приведены в соответствующих разделах данного руководства.

Изменение / смена последовательности котла осуществляется в полночь.

Приложение A375.2 весьма разнообразно. Основные принципы работы:
Приложения A375.1 / A375.2 / A375.3 могут управлять включением / выключением до 8 горелок.
В приложении A 375.2 первые 2 горелки управляются реле в ECL 310. Максимум 4 следующих горелки управляются реле в модуле расширения ECA 32 (расположенном в клеммной панели ECL 310). Максимум 2 последних горелки управляются симисторами в ECL 310. Вспомогательные реле должны быть подключены к симисторам.

Отопление (контур 1):

Обычно общая температура котла задается в соответствии с вашими требованиями. Датчик температуры котла S3 является наиболее важным датчиком. Он должен устанавливаться надлежащим образом для обеспечения измерения общей температуры котла. Требуемая температура котла S3 рассчитывается регулятором ECL на основе температуры наружного воздуха (S1). Чем ниже температура наружного воздуха, тем выше требуемая температура котла. Температура котла также является температурой подачи в контуре отопления прямого присоединения.
В соответствии с недельной программой (до 3 "Комфортных" периодов/дней) контур отопления может быть переключен в режим комфорта или экономии (два разных температурных значения для требуемой комнатной температуры). В режиме экономии может быть выбрана функция "Полный останов" для выключения отопления.
Первый шаг горелки включается, когда общая температура котла опускается ниже, чем требуемая температура котла. Регулятор контролирует общую температуру котла и включает следующий шаг горелки, если общая температура котла не увеличивается должным образом. Выключение шагов горелки осуществляется в обратном порядке. Разница переключения определяет включение / выключение.
Управление горелками может осуществляться:

- в фиксированной последовательности (пример: всегда 1-2-3-4-5); или
- в автоматической сменяемой последовательности (пример: первый период: 1-2-3-4-5, второй период: 2-3-4-5-1, третий период: 3-4-5-1-2 и так далее);
- в полуавтоматической сменяемой последовательности (пример: первый период: 1, 2-3-4-5, второй период: 1, 3-4-5-2, третий период: 1, 4-5-2-3 и так далее).

Кроме того, функция защиты котла включает циркуляционный насос, когда температура котла поднимается выше минимального значения. Для горелки может быть установлено минимальное время включения для увеличения КПД котла. Температура обратки (S5) для котла не должна быть слишком высокой (конденсационный котел) или слишком низкой (жидкотопливный или газовый котел). В таком случае требуемая температура котла может быть уменьшена или увеличена. Кроме того, ограничение температуры обратки зависит от температуры наружного воздуха. Обычно чем ниже температура наружного воздуха, тем выше порог допустимой температуры обратки.
Если измеряемая комнатная температура (измеряемая с помощью S7 или устройства удаленного управления ECA 30) не равна требуемой комнатной температуре, требуемая температура котла также может быть изменена.
Циркуляционный насос (P1) включается при включении отопления или для защиты от замерзания.
Отопление может отключаться, когда температура наружного воздуха поднимается выше установленного значения. Требуемая общая температура котла может через S10 контролироваться с помощью внешнего напряжения в диапазоне 0-10 В.

Стандартное приложение А375.2:

* Разгрузочный клапан

Представленная схема является лишь принципиальной и не содержит всех компонентов, которые могут оказаться в вашей системе.

Все перечисленные компоненты подключаются к регулятору ECL Comfort.

Список компонентов:

S1 Датчик температуры наружного воздуха
S3 Датчик общей температуры котла
S5 Датчик температуры обратки
S6 Датчик температуры в баке ГВС
S7 Датчик комнатной температуры / ECA 30
(S10) (регулирование температуры наружного воздуха, не показано)
P1 Циркуляционный насос, отопление
В1-В8 Горелка 1 ... 8
P3 Насос нагрева ГВС
А1 Авария

В регулятор предварительно вводятся заводские настройки, которые приведены в соответствующих разделах данного руководства.

Изменение / смена последовательности котла осуществляется в полночь.

Приложение A375.2 весьма разнообразно. Основные принципы работы:

ГВС (контур 2):

В соответствии с недельной программой (до 3 "Комфортных" периодов/дней) контур ГВС может быть переключен в режим комфорта или экономии (два разных температурных значения для требуемой температуры ГВС).

Если измеренная температура ГВС (S6) опускается ниже значения требуемой температуры ГВС, то начинается нагрев ГВС:

- Циркуляционный насос P1 в контуре отоления отключается.
- Насос нагрева ГВС РЗ включается.
- Требуемая температура котла на S3 увеличивается.

Как правило, требуемая температура котла на 10-15 градусов выше требуемой температуры ГВС.

Когда измеренная температура ГВС (S6) поднимается выше значения требуемой температуры ГВС, насос нагрева ГВС (P3) выключается. Разница начала и окончания определяет включение / выключение. Можно задать время пробега.

Циркуляционный насос ГВС (Р4) работает по недельной программе с включениями до 3 раз в день.

Возможен запуск антибактериальной функции в выбранные дни недели.

У нагрева ГВС может быть приоритет, т.е. насос Р3 включен, а насос P1 выключен. Если в данном приложении присутствует предохранительный клапан (распределительный клапан) для нагрева ГВС, то циркуляционный насос P1 остается включенным при нагреве ГВС.

Стандартное приложение А375.2:

* Разгрузочный клапан

00

Представленная схема является лишь принципиальной и не содержит всех компонентов, которые могут оказаться в вашей системе.

Все перечисленные компоненты подключаются к регулятору ECL Comfort.

Список компонентов:

S1 Датчик температуры наружного воздуха
S3 Датчик общей температуры котла
S5 Датчик температуры обратки
S6 Датчик температуры в баке ГВС
S7 Датчик комнатной температуры / ECA 30
(S10) (регулирование температуры наружного воздуха, не показано)
P1 Циркуляционный насос, отопление
B1-B8 Горелка 1 ... 8
P3 Насос нагрева ГВС
A1 Авария

S

В регулятор предварительно вводятся заводские настройки, которые приведены в соответствующих разделах данного руководства.

Приложение А375.3 весьма разнообразно. Основные принципы работы:
Приложения A375.1 / A375.2 / A375.3 могут управлять включением / выключением до 8 горелок.
В приложении A375.3 первые 2 горелки управляются реле в ECL 310. Максимум 4 следующих горелки управляются реле в модуле расширения ECA 32 (расположенном в клеммной панели ECL 310). Максимум 2 последних горелки управляются симисторами в ECL 310. Вспомогательные реле должны быть подключены к симисторам.

Отопление (контур 1):

Обычно общая температура котла задается в соответствии с вашими требованиями. Датчик температуры котла S3 является наиболее важным датчиком. Он должен устанавливаться надлежащим образом для обеспечения измерения общей температуры котла. Требуемая температура котла S3 рассчитывается регулятором ECL на основе температуры наружного воздуха (S1). Чем ниже температура наружного воздуха, тем выше требуемая температура котла. Температура котла также является температурой подачи в контуре отопления прямого присоединения.
В соответствии с недельной программой (до 3 "Комфортных" периодов/дней) контур отопления может быть переключен в режим комфорта или экономии (два разных температурных значения для требуемой комнатной температуры). В режиме экономии может быть выбрана функция "Полный останов" для выключения отопления.
Первый шаг горелки включается, когда общая температура котла опускается ниже, чем требуемая температура котла. Регулятор контролирует общую температуру котла и включает следующий шаг горелки, если общая температура котла не увеличивается должным образом. Выключение горелки осуществляется в обратном порядке. Разница переключения определяет включение / выключение.
Управление горелками может осуществляться:

- в фиксированной последовательности (пример: всегда 1-2-3-4-5); или
- в автоматической сменяемой последовательности (пример: первый период: 1-2-3-4-5, второй период: 2-3-4-5-1, третий период: 3-4-5-1-2 и так далее);
- в полуавтоматической сменяемой последовательности (пример: первый период: 1, 2-3-4-5, второй период: 1 , 3-4-5-2, третий период: 1, 4-5-2-3 и так далее).
Кроме того, функция защиты котла включает циркуляционный насос, когда температура котла поднимается выше минимального значения. Для горелки может быть установлено минимальное время включения для увеличения КПД котла.
Температура обратки (S5) для котла не должна быть слишком высокой (конденсационный котел) или слишком низкой (жидкотопливный или газовый котел). В таком случае требуемая температура котла может быть уменьшена или увеличена. Кроме того, ограничение температуры обратки зависит от температуры наружного воздуха. Обычно чем ниже температура наружного воздуха, тем выше порог допустимой температуры обратки.
Если измеряемая комнатная температура (измеряемая с помощью S7 или устройства удаленного управления ECA 30) не равна требуемой комнатной температуре, требуемая температура котла также может быть изменена.
Циркуляционный насос (P1) включается при включении отопления или для защиты от замерзания.
Отопление может отключаться, когда температура наружного воздуха поднимается выше установленного значения. Требуемая общая температура котла может через S10 контролироваться с помощью внешнего напряжения в диапазоне 0-10 В.

Стандартное приложение А375.3:

* Разгрузочный клапан

Представленная схема является лишь принципиальной и не содержит всех компонентов, которые могут оказаться в вашей системе.

Все перечисленные компоненты подключаются к регулятору ECL Comfort.

Список компонентов:

S1 Датчик температуры наружного воздуха
S2 Датчик температуры обратки, контур 2
S3 Датчик общей температуры котла, контур 1
S4 Датчик температуры подачи, контур 2
S5 Датчик температуры обратки, контур 1
S7 Датчик комнатной температуры / ECA 30, контур 1
S8 Датчик комнатной температуры / ECA 30, контур 2
(S10) (регулирование температуры наружного воздуха, не показано)
M2 Регулирующий клапан с электроприводом, контур 2
P1 Циркуляционный насос, контур 1
B1-B8 Горелка 1 ... 8
P3 Насос нагрева ГВС, контур 3
А1 Авария

В регулятор предварительно вводятся заводские настройки, которые приведены в соответствующих разделах данного руководства.

Приложение A375.3 весьма разнообразно. Основные принципы работы:

Отопление (контур 2):

Как правило, температура подачи задается в соответствии с вашими требованиями. Датчик температуры подачи S4 является наиболее важным датчиком. Требуемая температура подачи S4 рассчитывается регулятором ECL на основе температуры наружного воздуха (S1). Чем ниже температура наружного воздуха, тем выше требуемая температура подачи.

В соответствии с недельной программой (до 3 "Комфортных" периодов/дней) контур отопления может быть переключен в режим комфорта или экономии (два разных температурных значения для требуемой комнатной температуры). В режиме экономии может быть выбрана функция "Полный останов" для выключения отопления.

Регулирующий клапан с электроприводом M2 постепенно открывается, если температура подачи оказывается ниже требуемой температуры подачи и наоборот.

Требуемая температура подачи на S4 обычно определяет требуемую температуру котла (S3).

Температура обратки (S2) может быть ограничена. В таком случае требуемая температура подачи на S4 может быть уменьшена или увеличена.

Кроме того, ограничение температуры обратки зависит от температуры наружного воздуха. Обычно чем ниже температура наружного воздуха, тем выше порог допустимой температуры обратки.

Если измеряемая комнатная температура (измеряемая с помощью $\mathrm{S8}$ или устройства удаленного управления ЕСА 30) не равна требуемой комнатной температуре, требуемая температура котла также может быть изменена.

Циркуляционный насос (Р4) включается при включении отопления или для защиты от замерзания.

Отопление может отключаться, когда температура наружного воздуха поднимается выше заданного значения или когда у нагрева ГВС есть приоритет.

50

Представленная схема является лишь принципиальной и не содержит всех компонентов, которые могут оказаться в вашей системе.

Все перечисленные компоненты подключаются к регулятору ECL Comfort.

Список компонентов:

S1 Датчик температуры наружного воздуха
S2 Датчик температуры обратки, контур 2
S3 Датчик общей температуры котла, контур 1
S4 Датчик температуры подачи, контур 2
S5 Датчик температуры обратки, контур 1
S7 Датчик комнатной температуры / ECA 30, контур 1
S8 Датчик комнатной температуры / ECA 30, контур 2
(S10) (регулирование температуры наружного воздуха, не показано)
M2 Регулирующий клапан с электроприводом, контур 2
P1 Циркуляционный насос, контур 1
B1-В8 Горелка 1 ... 8
P3 Насос нагрева ГВС, контур 3
A1 Авария

В регулятор предварительно вводятся заводские настройки, которые приведены в соответствующих разделах данного руководства.

Приложение А375.3 весьма разнообразно. Основные принципы работы:

ГВС (контур 3):

В соответствии с недельной программой (до 3 "Комфортных" периодов/дней) контур ГВС может быть переключен в режим комфорта или экономии (два разных температурных значения для требуемой температуры ГВС).

Если измеренная температура ГВС (S6) опускается ниже значения требуемой температуры ГВС, то начинается нагрев「ВС:

- Циркуляционный насос P1 в контуре отоления отключается.
- Насос нагрева ГВС РЗ включается.
- Требуемая температура котла на S3 увеличивается.

Как правило, требуемая температура котла на 10-15 градусов выше требуемой температуры ГВС.

Когда измеренная температура ГВС (S6) поднимается выше значения требуемой температуры ГВС, насос нагрева ГВС (P3) выключается. Разница начала и окончания определяет включение / выключение. Можно задать время пробега.

Возможен запуск антибактериальной функции в выбранные дни недели.

У нагрева ГВС может быть приоритет, т.е. насос Р3 включен, а насос P1 выключен. Если в данном приложении присутствует предохранительный клапан (распределительный клапан) для нагрева ГВС, то циркуляционный насос P1 остается включенным при нагреве ГВС.

Стандартное приложение А375.3:

* Разгрузочный клапан

Представленная схема является лишь принципиальной и не содержит всех компонентов, которые могут оказаться в вашей системе.

Все перечисленные компоненты подключаются к регулятору ECL Comfort.

Список компонентов:
S1 Датчик температуры наружного воздуха
S2 Датчик температуры обратки, контур 2
S3 Датчик общей температуры котла, контур 1
S4 Датчик температуры подачи, контур 2
S5 Датчик температуры обратки, контур 1
S7 Датчик комнатной температуры / ECA 30, контур 1
S8 Датчик комнатной температуры / ECA 30, контур 2
(S10) (регулирование температуры наружного воздуха, не показано)
M2 Регулирующий клапан с электроприводом, контур 2
P1 Циркуляционный насос, контур 1
B1-B8 Горелка 1 ... 8
P3 Насос нагрева ГВС, контур 3
A1 Авария

В регулятор предварительно вводятся заводские настройки, которые приведены в соответствующих разделах данного руководства

Приложение А375. Основные принципы работы:

С помощью переключателя неиспользованный вход можно использовать для переключения программы в фиксированный режим комфорта или экономии.

Возможна установка связи с системой SCADA по шине Modbus.
Один или несколько подключенных расходомеров или тепловычислителей (на сигналах по M-bus) могут передавать данные M-bus по шине Modbus.

Авария, А375.1, A375.2 и А375.3:

Авария A1 (реле R6) и символ аварии (я) могут быть использованы:

- при отсоединении/коротком замыкании датчика температуры или его соединений.

Авария, A375.3:

Авария A1 (реле R6) и символ аварии (£) могут быть использованы:

- если действительная температура подачи на S4 (контур отопления 2), отличается от требуемой температуры подачи.

Регулятор содержит готовые заводские настройки, указанные в соответствующих разделах инструкции.

2.2 Определение типа системы

Определение типа системы

Регуляторы ECL Comfort предназначены для использования в самых разнообразных системах теплоснабжения, горячего водоснабжения (ГВС) и кондиционирования, различных конструкций и мощностей. Если ваша система отличается от тех, что представлены на рисунках, то вы можете предварительно составить план вашей системы. С его помощью вам будет проще пользоваться руководством по установке, которое проведет вас через весь процесс установки и настройки регулятора.

ECL Comfort - универсальный регулятор, который может применяться в самых различных системах. Исходя из стандартных схем, представленных ниже, можно сконструировать любую систему. В этом разделе вы найдете примеры наиболее часто используемых систем. Если ваша система не совпадает в точности ни с одной из них, подберите схему, имеющую наибольшее сходство и внесите в нее собственные изменения.

이

Циркуляционный насос(-ы) в контуре(-ax) отопления можно установить как на подачу, так и на обратку. Установите насос в соответствии с рекомендациями производителя.

ПРИЛОЖЕНИЯ А275:

A275.1, пример а
Управление включением / выключением котла контура отопления.

* = разгрузочный клапан

A275.1, пример б
Управление включением / выключением котла контура отопления. Контур котла оснащен коллектором с малыми потерями.

[^0]A275.2, пример а
Управление включением / выключением котла контура отопления и ГВС. Дополнительный приоритет ГВС.

* = разгрузочный клапан

При нагреве ГВС включается Р3, и значение требуемой температуры котла находится на несколько градусов выше требуемой температуры ГВС.
Р1 выключается.

Специальные настройки для приложения A275.2, пример а:
Навигация: Номер ID: Рекомендуемая настройка:
Контур ГВС (контур 2)
Нагрев ГВС регулируется насосом P3:
МЕНЮ \Настройки \Приложение: "Клапан / Насос" 12051 ВКЛ
Требуемая температура нагрева ГВС должна влиять на требуемую температуру
Котла: МЕНЮ \Настройки \Приложение: "Бак, под. / обр." BЫK 12053 BIK
Обратите внимание:
Если "Клапан / Насос" в 12051 выключен, то Р3 включается при нагреве ГВС. При этом требуемая температура котла все равно будет на несколько градусов выше требуемой температуры ГВС, а P1 останется включенным.

A275.2, пример б
Управление включением / выключением котла контура отопления и ГВС. Приоритет ГВС.

* $=$ разгрузочный клапан

При нагреве ГВС включается P3 (предохранительный клапан), и значение требуемой температуры котла находится на несколько градусов выше требуемой температуры ГВС.
P1 постоянно включен.

50		
Специальные настройки для приложения A275.2, пример б:		
Навигация:	Номер ID:	Рекоменд. настройка:
Контур ГВС (контур 2)		
Нагрев ГВС регулируется предохранительным клапаном P3 / M1:		
MEHЮ \ Настройки \ Приложение: "Клапан / Насос"	12051	вык
Требуемая температура нагрева ГВС должна влиять на требуемую температуру котла:		
МЕНЮ \ Настройки \ Приложение: "Бак, под. / обр."	12053	Вык

A275.2, пример в

Управление включением / выключением котла контура отопления и ГВС. Дополнительный приоритет ГВС. Контур котла оснащен коллектором с малыми потерями.

* = разгрузочный клапан

Насос в контуре котла не регулируется.
При нагреве ГВС включается Р3, и значение требуемой температуры котла находится на несколько градусов выше требуемой температуры ГВС.
P1 выключается.

Специальные настройки для приложения A275.2, пример в:
Навигация:
Номер ID: Рекомендуемая настройка:
Контур ГВС (контур 2)
Нагрев ГВС регулируется насосом P3:
МЕНЮ \Настройки \Приложение: "Клапан / Насос" 12051 ВКЛ
Требуемая температура нагрева ГВС должна влиять на требуемую температуру
КОТЛА: МЕНЮ Настройки \ Приложение: "Бак, под. / обр."
12053
BЫК
Обратите внимание:
Если "Клапан / Насос" в 12051 выключен, то Р3 включается при нагреве ГВС. При этом требуемая температура котла все равно будет на несколько градусов выше требуемой температуры ГВС, а P1 останется включенным.

A275.2, пример г
Управление включением / выключением котла контура отопления и ГВС. Приоритет ГВС. Контур котла оснащен коллектором с малыми потерями.

* = разгрузочный клапан

Насос в контуре котла не регулируется.
При нагреве ГВС включается P3 (предохранительный клапан), и значение требуемой температуры котла находится на несколько градусов выше требуемой температуры ГВС.
Р1 включается.

Специальные настройки для приложения A275.2, пример г:
Навигация: Номер ID: Рекоменд. настройка:

Контур ГВС (контур 2)

Нагрев ГВС регулируется предохранительным клапаном Р3 / M1:
МЕНЮ \Настройки \ Приложение: "Клапан / Насос"
12051
ВЫК
Требуемая температура нагрева ГВС должна влиять на требуемую температуру котла:
МЕНЮ \Настройки \ Приложение: "Бак, под. / обр."
12053
Вык

A275.3, пример а

Управление включением / выключением котла контура зависимого отопления (1), контура смешения (2) и контура ГВС (3). Дополнительный приоритет ГВС.

* = разгрузочный клапан

Контур отопления 2 также может быть контуром напольного отопления.
При нагреве ГВС включается Р3, и значение требуемой температуры котла находится на несколько градусов выше требуемой температуры ГВС.
Р1 выключается. Контур отопления 2 может быть закрыт при нагреве ГВС.

Специальные настройки для приложения A275.3, пример а:
Навигация: Номер ID: Рекоменд. настройка:

Контур отопления (контур 1)

Контур 1 должен быть способным принимать тепловую нагрузку (требуемую температуру подачи) с контура 2:
МЕНЮ \Настройки \Приложение: "Смещение"
11017
$3 K^{* *}$
** Данное значение добавляется к значению тепловой нагрузки с контура 2

Контур отопления (контур 2)

Контур 2 должен быть способным подавать тепловую нагрузку (требуемую температуру подачи) на контур 1:
МЕНЮ \Настройки \Приложение: "Передать Т треб."
12500
ВКЛ
Контур 2 может быть закрыт при нагреве ГВС:
МЕНЮ \Настройки \Приложение: "Приоритет ГВС" 12052

*** Установите "ВЫК", если не нужно закрывать, и "ВКЛ", если нужно закрыть
Контур ГВС (контур 3)
Нагрев ГВС регулируется насосом Р3:
МЕНЮ \Настройки \Приложение: "Клапан / Насос" 13051
ВКЛ
Требуемая температура нагрева ГВС должна влиять на температуру котла: МЕНЮ \Настройки \ Приложение: "Бак, под. / обр."

13053
ВЫК

A275.3, пример б

Управление включением / выключением котла контура зависимого отопления (1), контура смешения (2) и контура ГВС (3). Частичный приоритет ГВС.

* = разгрузочный клапан

Контур отопления 2 также может быть контуром напольного отопления.
При нагреве ГВС включается P3 (предохранительный клапан), и значение требуемой температуры котла находится на несколько градусов выше требуемой температуры ГВС.
P1 постоянно включен.
Контур отопления 2 может быть закрыт при нагреве ГВС.

Специальные настройки для приложения A275.3, пример б:
Навигация: Номер ID: Рекоменд. настройка:

Контур отопления (контур 1)

Контур 1 должен быть способным принимать тепловую нагрузку (требуемую
температуру подачи) с контура 2:
МЕНЮ \ Настройки \Приложение: "Смещение" 11017
$3 K^{* *}$
** Данное значение добавляется к значению тепловой нагрузки с контура 2

Контур отопления (контур 2)

Контур 2 должен быть способным подавать тепловую нагрузку (требуемую температуру подачи) на контур 1:
МЕНЮ \Настройки \ Приложение: "Передать Т треб." 12500 ВКЛ
Контур 2 может быть закрыт при нагреве ГВС:
МЕНЮ \Настройки \Приложение: "Приоритет ГВС" 12052
*** Установите "ВЫК", если не нужно закрывать, и "ВКЛ", если нужно закрыть

Контур ГВС (контур 3)

Нагрев ГВС регулируется предохранительным клапаном P3 / M1:
МЕНЮ \Настройки \ Приложение: "Клапан / Насос"
13051
ВЫК
Требуемая температура нагрева ГВС должна влиять на температуру котла:
МЕНЮ \Настройки \ Приложение: "Бак, под. / обр."
13053
вык

A275.3, пример в
Управление включением / выключением котла контура зависимого отопления (1), контура смешения (2) и контура ГВС (3). Приоритет ГВС.

* = разгрузочный клапан

Контур отопления 2 также может быть контуром напольного отопления.
При нагреве ГВС включается Р3 (предохранительный клапан), и значение требуемой температуры котла находится на несколько градусов выше требуемой температуры ГВС.
Р1 постоянно включен.
Контур отопления 2 закрывается при нагреве ГВС.

A275.3, пример г

Управление включением / выключением котла контура зависимого отопления (1), контура смешения (2) и контура ГВС (3). Дополнительный приоритет ГВС. Контур смешения (2) регулируется с помощью смесительного клапана на 4 порта.

* = разгрузочный клапан

Контур отопления 2 также может быть контуром напольного отопления.
При нагреве ГВС включается Р3, и значение требуемой температуры котла находится на несколько градусов выше требуемой температуры ГВС.
P1 выключается.
Контур отопления 2 может быть закрыт при нагреве ГВС.

∞

Специальные настройки для приложения A275.3, пример г:
Навигация: Номер ID: Рекоменд. настройка:

Контур отопления (контур 1)

Контур 1 должен быть способным принимать тепловую нагрузку (требуемую
температуру подачи) с контура 2:
МЕНЮ \Настройки \Приложение: "Смещение"
11017
$3 \mathrm{~K}^{* *}$
** Данное значение добавляется к значению тепловой нагрузки с контура 2

Контур отопления (контур 2)

Контур 2 должен быть способным подавать тепловую нагрузку (требуемую температуру подачи) на контур 1 :
МЕНЮ \Настройки \Приложение: "Передать Т треб."
12500
ВКЛ
Контур 2 может быть закрыт при нагреве ГВС:
МЕНЮ \Настройки \Приложение: "Приоритет ГВС"
12052
*** Установите "ВЫК", если не нужно закрывать, и "ВКЛ", если нужно закрыть

Контур ГВС (контур 3)

Нагрев ГВС регулируется насосом P3:
МЕНЮ \Настройки \Приложение: "Клапан / Насос"
13051
ВКЛ
Требуемая температура нагрева ГВС должна влиять на температуру котла:
МЕНЮ \Настройки \Приложение: "Бак, под. / обр."

A275.3, пример д

Управление включением / выключением котла контура зависимого отопления (1), контура смешения (2) и контура ГВС (3). Дополнительный приоритет ГВС. Контур котла оснащен коллектором с малыми потерями.

* = разгрузочный клапан

Насос в контуре котла не регулируется. Контур отопления 2 также может быть контуром напольного отопления.
При нагреве ГВС включается Р3, и значение требуемой температуры котла находится на несколько градусов выше требуемой температуры ГВС.
Р1 выключается. Контур отопления 2 может быть закрыт при нагреве ГВС.

Специальные настройки для приложения A275.3, пример д:
Навигация: Номер ID: Рекоменд. настройка:

Контур отопления (контур 1)

Контур 1 должен быть способным принимать тепловую нагрузку (требуемую температуру подачи) с контура 2:
МЕНЮ \Настройки \Приложение: "Смещение" 3 K**
** Данное значение добавляется к значению тепловой нагрузки с контура 2

Контур отопления (контур 2)

Контур 2 должен быть способным подавать тепловую нагрузку (требуемую температуру подачи) на контур 1:
МЕНЮ \backslash Настройки \backslash Приложение: "Передать Т треб." 12500
ВКл
Контур 2 может быть закрыт при нагреве ГВС:
МЕНЮ \Настройки \Приложение: "Приоритет ГВС"
12052
*** Установите "ВЫК", если не нужно закрывать, и "ВКЛ", если нужно закрыть

Контур ГВС (контур 3)

Нагрев ГВС регулируется насосом P3:
МЕНЮ \Настройки \Приложение: "Клапан / Насос" 13051
ВКЛ
Требуемая температура нагрева ГВС должна влиять на температуру котла:
МЕНЮ \Настройки \ Приложение: "Бак, под. / обр."

A275.3, пример е

Управление включением / выключением котла, контуром смешения и контуром ГВС. Дополнительный приоритет ГВС.

* = разгрузочный клапан

При нагреве ГВС включается P3, и значение требуемой температуры котла находится на несколько градусов выше требуемой температуры ГВС.
Контур отопления 2 может быть закрыт при нагреве ГВС.

A275.3, пример а

Управление включением / выключением котла контура зависимого отопления (1) и контура смешения (2).

* = разгрузочный клапан

Контур отопления 2 также может быть контуром напольного отопления.

Специальные настройки для приложения A275.3, пример ж:
Навигация:
Номер ID:
Рекоменд. настройка:
Контур отопления (контур 1)
Контур 1 должен быть способным принимать тепловую нагрузку (требуемую температуру подачи) с контура 2:
МЕНЮ \Настройки \Приложение: "Смещение" 11017
$3 K^{* *}$
** Данное значение добавляется к значению тепловой нагрузки с контура 2

Контур отопления (контур 2)

Контур 2 должен быть способным подавать тепловую нагрузку (требуемую температуру подачи) на контур 1:
МЕНЮ \backslash Настройки \backslash Приложение: "Передать Т треб."

ПРИЛОЖЕНИЯ А375:

A375.1, пример а
Один котел с управлением включением / выключением двух горелок для контура отопления.

* = разгрузочный клапан

Фиксированная последовательность: Горелка 1 должна быть включена до включения горелки 2.
Горелка 1 включается при низкой тепловой нагрузке. При повышенной тепловой нагрузке дополнительно включается горелка 2. Последний шаг горелки может быть выключен, если температура наружного воздуха выше установленного значения.

∞		
Специальные настройки для приложения A375.1, пример а:		
Навигация:	Номер ID:	Рекоменд. настройка:
Контур отопления (контур 1)		
Тип последовательности (код) для управления горелками:		
МЕНЮ \Настройки \Котел: "Тип последовательности"	11072	3
Количество всех шагов горелки:		
МЕНЮ \ Настройки \Котел: "Шаги"	11073	2

А375.1, пример 6
Управление включением / выключением двух котлов контура отопления.

* $=$ разгрузочный клапан

Сменяемая последовательность: Горелка 1 включается перед горелкой 2. На следующий день горелка 2 включается перед горелкой 1.
Одна ступень горелки включается при низкой тепловой нагрузке. При повышенной тепловой нагрузке дополнительно включается следующая ступень горелки.
Последняя ступень горелки может быть выключена, если температура наружного воздуха выше установленного значения.

[^1]А375.1, пример в
Один котел с управлением включением / выключением двух горелок для контура отопления. Контур котла оснащен коллектором с малыми потерями.

* = разгрузочный клапан

Насос котла не регулируется.
Фиксированная последовательность: Горелка 1 должна быть включена до включения горелки 2.
Горелка 1 включается при низкой тепловой нагрузке. При повышенной тепловой нагрузке дополнительно включается горелка 2. Последняя ступень горелки может быть выключена, если температура наружного воздуха выше установленного значения.

Специальные настройки для приложения A375.1, пример в:
Навигация: Номер ID: Рекоменд. настройка:

Контур отопления (контур 1)

Тип последовательности (код) для управления горелками:
МЕНЮ \Настройки \Котел: "Тип последовательности" 11072

Количество всех ступеней горелки:
МЕНЮ \Настройки \Котел: "Шаги"

A375.1, пример г
Управление включением / выключением двух котлов контура отопления. Контур котла оснащен коллектором с малыми потерями.

* $=$ разгрузочный клапан

Насосы котла не регулируются.
Сменяемая последовательность: Горелка 1 включается перед горелкой 2 . На следующий день горелка 2 включается перед горелкой 1.
Один шаг горелки включается при низкой тепловой нагрузке. При повышенной тепловой нагрузке дополнительно включается следующий шаг горелки.
Последний шаг горелки может быть выключен, если температура наружного воздуха выше установленного значения.

Специальные настройки для приложения A375.1, пример г:
Навигация: Номер ID: Рекоменд. настройка:
Контур отопления (контур 1)
Тип последовательности (код) для управления горелками:
МЕНЮ \backslash Настройки \backslash Котел: "Тип последовательности" 0
Количество всех ступеней горелки:
МЕНЮ \Настройки \Котел: "Шаги" 2

A375.1, пример д
Два котла с управлением включением / выключением двух горелок для контура отопления.

* $=$ разгрузочный клапан

Фиксированная последовательность для каждого котла: Горелка 1 (3) должна быть включена до включения горелки 2 (4). Сменяемая последовательность для котлов: Котел 1 включается перед котлом 2. На следующий день котел 2 включается перед котлом 1.
Ступени горелки включаются в завимимости от тепловой нагрузки.
Последний шаг горелки может быть выключен, если температура наружного воздуха выше установленного значения.

Специальные настройки для приложения A375.1, пример д:
Навигация: Номер ID: Рекоменд. настройка:
Контур отопления (контур 1)
Тип последовательности (код) для управления горелками: МЕНЮ \Настройки \Котел: "Тип последовательности" 11072

Количество всех ступеней горелки:
МЕНЮ \Настройки \Котел: "Ступени"
11073 4

А375.1, пример е
Управление включением / выключением до четырех котлов контура отопления.

* = разгрузочный клапан

Сменяемая последовательность котлов: Котел 1-2-3-4. На следующий день: Котел 2-3-4-1. На следующий день: Котел 3 -4-1-2 и так далее.

Ступени горелки включаются в завимимости от тепловой нагрузки.

Последняя ступень горелки может быть выключена, если температура наружного воздуха выше установленного значения.

[^2]A375.1, пример ж
Управление включением / выключением до восьми котлов контура отопления.

* = разгрузочный клапан

Модуль расширения ECA 32 используется для регулирования котлов 5, 6, 7 и 8 .
Сменяемая последовательность для котлов: Котел 1-2-3-4-5-6-7-8. На следующий день: Котел 2-3-4-5-6-7-8-1. На следующий день: Котел 3-4-5-6-7-8-1-2 и так далее.
Ступени горелки включаются в завимимости от тепловой нагрузки.
Последняя ступень горелки может быть выключена, если температура наружного воздуха выше установленного значения.

Специальные настройки для приложения A375.1, пример ж:
Навигация: Номер ID: Рекоменд. настройка:
Контур отопления (контур 1)
Тип последовательности (код) для управления горелками: МЕНЮ \Настройки \Котел: "Тип последовательности" 11072 0

Количество всех ступеней горелки:
МЕНЮ \Настройки \Котел: "Шаги"
11073
1 8

А375.1, пример 3
Управление включением / выключением до восьми котлов контура отопления. Первый котел (высокий КПД) имеет высший приоритет.

* = разгрузочный клапан

Первый котел может быть тепловым насосом.
Модуль расширения ECA 32 используется для регулирования котлов 5, 6, 7 и 8 .
Последовательность для котлов: Котел 1, 2-3-4-5-6-7-8. На следующий день: Котел 1, 3-4-5-6-7-8-2. На следующий день: Котел 1,4-5-6-7-8-2-3 и так далее.
Ступени горелки включаются в завимимости от тепловой нагрузки.
Последняя ступень горелки может быть выключена, если температура наружного воздуха выше установленного значения.

Специальные настройки для приложения A375.1, пример з:
Навигация: Номер ID: Рекоменд. настройка:

Контур отопления (контур 1)

Тип последовательности (код) для управления горелками:
МЕНЮ \Настройки \Котел: "Тип последовательности"
11072
1
Количество всех ступеней горелки:
МЕНЮ \Настройки \Котел: "Шаги"
11073
1 8

A375.1, пример и

Управление включением / выключением до восьми котлов контура отопления. Первые два котла (высокий КПД) имеют высший приоритет.

* $=$ разгрузочный клапан

Первые два котла могут быть тепловыми насосами.
Модуль расширения ECA 32 используется для регулирования котлов 5, 6, 7 и 8 .
Последовательность для котлов: Котел 1,2,3-4-5-6-7-8. На следующий день: Котел 1, 2, 4-5-6-7-8-3. На следующий день: Котел 1, 2, 5-6-7-8-3-4 и так далее.
Ступени горелки включаются в завимимости от тепловой нагрузки.
Последняя ступень горелки может быть выключена, если температура наружного воздуха выше установленного значения.

Специальные настройки для приложения A375.1, пример и:
Навигация: Номер ID: Рекоменд. настройка:

Контур отопления (контур 1)

Тип последовательности (код) для управления горелками: МЕНЮ \Настройки \Котел: "Тип последовательности" 11072 2

Количество всех ступеней горелки:
МЕНЮ \Настройки \Котел: "Ступени"
11073
1 8

A375.2, пример а
Управление включением / выключением до восьми котлов контура отопления и контура ГВС.

* = разгрузочный клапан

На схеме приложения приведена общая и основная установка.
Регулятор ECL Comfort 310 управляет котлами 1 и 2. Модуль расширения ECA 32 управляет котлами 3, 4, 5 и 6. Регулятор ECL Comfort 310 управляет котлами 7 и 8 через вспомогательные реле.
Горелки / котлы регулируются как описано в примерах а - и для A375.1.
Контур ГВС регулируется как описано в примерах для А275.2.

А375.3, пример а
Управление включением / выключением до восьми котлов контура зависимого отопления (1), контура смешения (2) и контура ГВС (3). Дополнительный приоритет ГВС.

* = разгрузочный клапан

На схеме приложения приведена общая и основная установка.
Регулятор ECL Comfort 310 управляет котлами 1 и 2. Модуль расширения ECA 32 управляет котлами $3,4,5$ и 6 . Регулятор ECL Comfort 310 управляет котлами 7 и 8 через вспомогательные реле.
Контур смешения (2) регулируется как описано в примерах для А275.3.
Контур ГВС (3) регулируется как описано в примерах для A275.2.

2.3 Установка

2.3.1 Установка регулятора ECL Comfort

Для облегчения доступа к регулятору его следует устанавливать рядом с системой. Выберите один из следующих вариантов, где используется та же базовая часть (код 087Н3220):

- Установка на стене
- Установка на DIN-рейке (35 мм)

ECL Comfort 210 может монтироваться на базовой частиECL Comfort 310 (с перспективой обновления).

Шурупы, кабельные уплотнители и дюбели в комплект не входят.

Фиксация регулятора ECL Comfort

Что бы закрепить регулятор ECL Comfort на его базовой части используйте фиксатор.

©

Для предупреждения травматизма и повреждения регулятора последний должен быть надежно закреплен в клемной панели. Для этого нажмите фиксатор до щелчка, после чего регулятор будет закреплен в клемной панели.

$\stackrel{\Delta}{4}$

Если регулятор не закреплен в клеммной панели, есть риск, что во время работы регулятор может отсоединиться и опора с клеммами будут открыты (230 В переменного тока) Для предупреждения травматизма убедитесь в том, что регулятор надежно закреплен на своей опоре. Если это не так, использовать регулятор запрещается!

Установка на стене

Установите базовую часть на стене с ровной поверхностью. Произведите все электрические соединения и разместите регулятор в базовой части. Закрепите регулятор с помощью фиксатора.

Установка на DIN-рейке (35 мм)

Установите базовую часть на DIN-рейке. Произведите все электрические соединения и разместите регулятор в базовой части. Закрепите регулятор с помощью фиксатора.

Демонтаж регулятора ECL Comfort

Для снятия регулятора с базовой части выньте фиксатор при помощи отвертки. Теперь регулятор можно снять с базовой части.

\triangle

Для крепления регулятора к опоре и его снятия используйте в качестве рычага отвертку.

©

Перед снятием регулятора ECL Comfort с опоры убедитесь в том, что питающее напряжение отсоединено.

2.3.2 Монтаж устройств дистанционного управления ECA 30 / 31

Выберите один следующих вариантов:

- Настенная установка, ЕСА 30 / 31
- Установка в щите управления, ECA 30

Шурупы и дюбели в комплект не входят.

Установка на стене

Закрепите базовую часть ECA 30 / 31 на стене с ровной поверхностью. Произведите все электрические соединения. Поместите ЕСА $30 / 31$ в базовую часть.

Установка в щите управления

Установите ЕСА 30 в щите управления при помощи монтажного каркаса ECA 30 (кодовый номер заказа 087Н3236). Произведите все электрические соединения. Закрепите каркас с помощью зажима. Поместите ECA 30 в базовую часть. ECA 30 можно подключать к внешнему датчику комнатной температуры.

ECA 31 нельзя устанавливать в щите управления, если планируется использование функции влажности.

2.4 Размещение температурных датчиков

2.4.1 Размещение температурных датчиков

Важно, чтобы датчики в ваших системах были установлены в правильном положении.

Перечисленные ниже температурные датчики предназначены для использования с регуляторами ECL Comfort серий 210 и 310, но не все из них потребуются для ваших задач

Датчик температуры наружного воздуха (ESMT)

Датчик температуры наружного воздуха должен располагаться на той стороне здания, где он наименее подвержен действию прямого солнечного света. Не следует устанавливать датчик вблизи дверей, окон и вентиляционных отверстий.

Датчик температуры теплоносителя в подающем трубопроводе (ESMU, ESM-11 или ESMC)
Датчик следует размещать не ближе 15 см от точки смешения потоков. В системах с теплообменником, «Данфосс» рекомендует использовать погружной датчик типа ESMU, вводя его внутрь патрубка теплообменника.

В месте установки датчика поверхность трубы должна быть чистой.

Датчик температуры в обратном трубопроводе (ESMU,

 ESM-11 или ESMC)Датчик температуры в обратном трубопроводе должен всегда располагаться так, чтобы измерять соответствующую температуру обратного потока.

Датчик комнатной температуры (ESM-10, ECA 30/31 блок дистанционного управления)
Датчик комнатной температуры необходимо размещать там, где должна контролироваться температура. Не следует устанавливать его на наружных стенах, вблизи радиаторов, окон или дверей.

Датчик температуры котла (ESMU, ESM-11 или ESMC)

Установите датчик в соответствии с техническими условиями изготовителя котла.

Датчик температуры воздуховода (тип ESMB-12 или ESMU)
Установите датчик таким образом, чтобы он измерял характерную температуру.

Датчик температуры ГВС (ESMU или ESMB-12)

Установите датчик температуры ГВС в соответствии с техническими условиями изготовителя.

Датчик температуры плиты (ESMB-12)
Установите датчик в гильзу.

50

ESM-11: Не двигайте датчик после его крепления во избежание повреждения чувствительного элемента.

ESM-11, ESMC и ESMB-12: Используйте теплопроводную пасту для быстрого измерения температуры.

ESMU и ESMB-12: При этом использование гильзы замедляет скорость измерения температуры.

Соотношение между температурой и омическим сопротивлением:

2.5 Электрические соединения

2.5.1 Электрические соединения на ~230 В. Общие положения

Общая клемма заземления используется для подключения соответствующих компонентов (насосы, регулирующие клапаны с электроприводом).

Инструкция

2.5.2 Электрические соединения, ~ 230 В, электропитание, насосы, регулирующие клапаны с электроприводом и т.п.

Приложение A275.1 / A275.2

Клемма	Описание	Макс. нагрузка
16	Авария (A1)	$4 \text { (2) A / } 230 \text { B }$ перем. тока*
15		
14	Фаза для насосов и горелки	
13 P3	Насос нагрева ГВС, ВКЛ / ВЫК, контур 2 (только А275.2)	$4 \text { (2) A/230 B }$ перем. тока*
12 B1	Горелка, ВКЛ / ВЫК	$4 \text { (2) A / } 230 \text { B }$ перем. тока*
11 P1	Циркуляционный насос, ВКЛ / ВЫК, контур 1	$4 \text { (2) A / } 230 \text { B }$ перем. тока*
10	Напряжение питания 230 В перем. тока - нейтраль (N)	
9	Напряжение питания 230 В перем. тока - фаза (L)	
8 M1	Фаза для выхода предохранительного клапана с электроприводом, контур 2 (только А275.2)	
7 M1	Предохранительный клапан с электроприводом, направление контура ГВС (только А275.2)	0.2 A / 230 В перем. тока
6 M1	Предохранительный клапан с электроприводом, направление контура отопления (только A275.2)	0.2 A / 230 В перем. тока

Установленные на заводе перемычки:
5 с 8, 9 с 14, L с 5 и L с 9, N с 10

Альтернативное соединение для P3 / M1, предохранительного клапана (A275.2):

Инструкция

Приложение А275.3

Кле		Описание	Макс. нагрузка
16		Фаза для циркуляционного насоса P4, контур 2	
15	P4	Циркуляционный насос, ВКЛ / ВЫК, контур 2	$4 \text { (2) A / } 230 \text { B }$ перем. тока*
14		Фаза для насосов и горелки	
13	P3	Насос нагрева ГВС, ВКЛ / ВЫК, контур 3	4 (2) A / 230 B перем. тока*
12	B1	Горелка, ВКЛ / ВЫК	$4 \text { (2) A / } 230 \text { B }$ перем. тока*
11	P1	Циркуляционный насос, ВКЛ / ВЫК, контур 1	4 (2) A / 230 B перем. тока*
10		Напряжение питания 230 В перем. тока - нейтраль (N)	
9		Напряжение питания 230 В перем. тока - фаза (L)	
8		Фаза для выхода предохранительного клапана с электроприводом М1, контур 3	
7	M1	Предохранительный клапан с электроприводом, направление контура ГВС	0.2 A / 230 В перем. тока
	M1	Предохранительный клапан с электроприводом, направление контура отопления	0.2 A / 230 В перем. тока
5		Фаза для регулирующего клапана с электроприводом M2, контур 2	0.2 A / 230 В перем. тока
4	M2	Регулирующий клапан с электроприводом - открытие, контур 2	0.2 A / 230 В перем. тока
3	M2	Регулирующий клапан с электроприводом - закрытие, контур 2	0.2 A / 230 В перем. тока
* Контактная группа реле: 4 А для омической нагрузки, 2 А для индуктивной нагрузки			

Установленные на заводе перемычки:
5 с 8, 9 с 14, L с 5 и L с 9, N с 10

Альтернативное соединение для P3 / M1, предохранительного клапана:

Инструкция

Приложение А375.1 (максимум 4 горелки)

Клемма	Описание	Макс. нагрузка
19	Фаза для аварийной сигнализации и горелки B4	
18	Авария (A1)	4 (2) A / 230 B перем. тока*
$17 \quad \mathrm{B4}$	Горелка, ВКЛ / ВЫК	4 (2) A / 230 B перем. тока*
16	Фаза для горелки В3	
15 B3	Горелка, ВКЛ / ВЫК	4 (2) A / 230 B перем. тока*
14	Фаза для насоса и горелок	
13 B2	Горелка, ВКЛ / ВЫк	4 (2) A / 230 B перем. тока*
$12 \quad \mathrm{~B} 1$	Горелка, Вкл / вык	4 (2) A / 230 B перем. тока*
11 P1	Циркуляционный насос ВКЛ / ВЫКЛ	4 (2) A / 230 B перем. тока*
10	Напряжение питания 230 В перем. тока - нейтраль (N)	
9	Напряжение питания 230 В перем. тока - фаза (L)	
* Контактная группа реле: 4 А для омической нагрузки, 2 А для индуктивной нагрузки		

Установленные на заводе перемычки:
5 с 8, 9 с 14, L c 5 и L c $9, N$ с 10

Приложение А375.1 (шаги горелки 5-8):

Клемма	Описание	Макс. нагрузка
48	Фаза для горелки B5	
$47 \quad$ B5	Горелка, ВКЛ / ВЫК	4 (2) A / 230 B перем. тока*
46	Не используется	
45	Фаза для горелки В6	
$44 \quad \mathrm{~B} 6$	Горелка, ВКЛ / ВЫК	$4 \text { (2) A / } 230 \mathrm{~B}$ перем. тока*
43	Не используется	
42	Фаза для горелки В7	
41 B7	Горелка, ВКЛ / ВЫК	4 (2) A / 230 B перем. тока*
40	Фаза для горелки В8	
39 B8	Горелка, ВКЛ / Вык	4 (2) A / 230 B перем. тока*

Приложение А375.2 - максимум 2 горелки, P4 является циркуляционным насосом в контуре ГВС
Приложение А375.3 - максимум 2 горелки, Р4 является циркуляционным насосом в контуре отопления 2

Кле		Описание	Макс. нагрузка
19		Фаза для аварийной сигнализации и горелки B2	
18		Авария (A1)	$4 \text { (2) A / } 230 \text { B }$ перем. тока*
	B2	Горелка, ВКЛ / ВЫК	4 (2) A / 230 B перем. тока*
16		Фаза для насоса P4	
	P4	Циркуляционный насос	4 (2) A / 230 B перем. тока*
14		Фаза для насосов и горелки	
13	P3	Насос нагрева ГВС, контур 2 (А375.2) или контур 3 (А375.3)	4 (2) A / 230 B перем. тока*
12	B1	Горелка, ВКЛ / ВЫК	4 (2) A / 230 B перем. тока*
11	P1	Циркуляционный насос, ВКЛ / ВЫК, контур 1	4 (2) A / 230 B перем. тока*
10		Напряжение питания 230 B перем. тока - нейтраль (N)	
9		Напряжение питания 230 В перем. тока - фаза (L)	
8		Фаза для выхода предохранительного клапана с электроприводом М1	
7	M1	Предохранительный клапан с электроприводом, направление контура ГВС, контур 2 (A375.2) или контур 3 (А375.3)	0.2 A / 230 В перем. тока
6	M1	Предохранительный клапан с электроприводом, направление контура отопления, контур 2 (A375.2) или контур 3 (А375.3)	0.2 A / 230 В перем. тока
5		Фаза для регулирующего клапана с электроприводом M2, контур 2	
4	M2	Регулирующий клапан с электроприводом - открытие, контур 2 (А375.3)	0.2 A / 230 В перем. тока
3	M2	Регулирующий клапан с электроприводом - закрытие, контур 2 (А375.3)	0.2 A / 230 В перем. тока
* Контактная группа реле: 4 А для омической нагрузки, 2 А для индуктивной нагрузки			

Установленные на заводе перемычки:
5 с 8, 9 с 14, L c 5 и L c $9, N$ с 10

Альтернативное соединение для P3 / М1, предохранительного клапана:

Приложение A375.2 / A375.3 (горелки 3-6):

Клемма		Описание	Макс. нагрузка
48		Фаза для горелки В3	
47	B3	Горелка, ВКЛ / ВЫК	$4 \text { (2) A / } 230 \text { B }$ перем. тока*
46		Не используется	
45		Фаза для горелки В4	
44	B4	Горелка, ВКЛ / ВЫК	$4 \text { (2) A / } 230 \text { B }$ перем. тока*
43		Не используется	
42		Фаза для горелки В5	
41	B5	Горелка, ВКЛ / ВЫК	$4 \text { (2) A / } 230 \text { B }$ перем. тока*
40		Фаза для горелки В6	
39	B6	Горелка, ВКЛ / ВЫк	4 (2) A / 230 B перем. тока*

Приложение А375.2 / A375.3 (горелки 7-8)

Клемма	Описание	Макс. нагрузка
5	Фаза для регулирования горелки 7 и 8	
4	Подключение для регулирующего клапана с электроприводом - открытие, контур 2 (А375.3)	$0.2 \mathrm{~A} / 230$ В перем. тока
3	Подключение для регулирующего клапана с электроприводом - закрытие, контур 2 (A375.3)	0.2 A / 230 В перем. тока
$2 \quad \mathrm{~K} 7$	Вспомогательное реле для регулирования горелки 7	0.2 A / 230 В перем. тока
1 K8	Вспомогательное реле для регулирования горелки 8	0.2 A / 230 В перем. тока

© 1

Сечение провода: 0.5-1.5 мм ${ }^{2}$
Неправильное подключение может привести к повреждению электронных выходов.
Макс. 2×1.5 мм 2 провода может быть подключено к каждой винтовой клемме.

2.5.3 Электрические соединения, термостат безопасности, ~230 В или ~24 В

Термостаты безопасности могут использоваться для контура 2
(M2) в приложении A275.3 / А375.3. Нижеприведенные схемы
предназначены для общего пользования.

С термостатом безопасности, одноступенчатое закрытие:

Регулирующий клапан с электроприводом без функции безопасности

С термостатом безопасности, одноступенчатое закрытие:

Регулирующий клапан с электроприводом с функцией безопасности

С термостатом безопасности, двухступенчатое закрытие:

Регулирующий клапан с электроприводом с функцией безопасности

Если ST1 активируется из-за высокой температуры (температура PT), регулирующий клапан с приводом постепенно закрывается. При повышении температуры (температура термостата безопасности) контур безопасности регулирующего клапана с приводом закрывает клапан.

Если термостат безопасности активируется, из-за высокой температуры, контур безопасности регулирующего клапана с приводом, сразу закрывает клапан.

Неправильное подключение может привести к повреждению электронных выходов.
Макс. 2×1.5 мм 2 провода может быть подключено к каждой винтовой клемме.

Инструкция

2.5.4 Электрические соединения, ~ 24 В, электропитание, насосы, клапаны с электроприводом и т.п.

Приложение A275.1 / A275.2

Q Трансформатор с двойной изоляцией (двухкамерный)

Клемма		Описание	Макс. нагрузка
16		Авария (A1)	4 (2) A / 24 В перем. тока*
15			
14		Фаза для управления насосами и горелкой	
13	K3	Управление насосом нагрева ГВС, ВКЛ / ВЫК, контур 2 (только А275.2)	4 (2) A / 24 В перем. тока*
12	B1	Горелка, ВКЛ / ВЫК	4 (2) A / 24 В перем. тока*
11	K1	Управление циркуляционным насосом, ВКЛ / ВЫК, контур 1	4 (2) A / 24 В перем. тока*
10		Напряжение питания 24 В перем. тока - (SN)	
9		Напряжение питания 24 В перем. тока - (SP)	
8	M1	Фаза для выхода предохранительного клапана с электроприводом, контур 2 (только A275.2)	
7	M1	Предохранительный клапан с электроприводом, направление контура ГВС (только А275.2)	1 A / 24 В перем. тока
	M1	Предохранительный клапан с электроприводом, направление контура отопления (только A275.2)	1 A / 24 В перем. тока
* Контактная группа реле: 4 А для омической нагрузки, 2 А для индуктивной нагрузки			

Установленные на заводе перемычки:
5 с 8 , 9 с 14, L c 5 и L c $9, N$ с 10

Альтернативное соединение для P3 / M1, предохранительного клапана (A275.2):

Инструкция

Приложение А275.3

Ø Трансформатор с двойной изоляцией (двухкамерный)

Установленные на заводе перемычки:
5 с 8 , 9 с 14, L c 5 и L c $9, N$ с 10

Альтернативное соединение для P3 / M1, предохранительного клапана:

Приложение А375.1 (максимум 4 горелки)

〇 Трансформатор с двойной изоляцией (двухкамерный)

Клемма	Описание	Макс. нагрузка
19	Фаза для аварийной сигнализации и горелки В4	
18	Авария (A1)	4 (2) A / 24 В перем. тока*
17 B4	Горелка, ВКЛ / ВЫК	4 (2) A / 24 В перем. тока*
16	Фаза для горелки В3	
15 B3	Горелка, ВКЛ / ВЫК	4 (2) A / 24 В перем. тока*
14	Фаза для управления насосом и горелками	
13 B2	Горелка, ВКЛ / ВЫК	4 (2) A / 24 В перем. тока*
12 B1	Горелка, ВКЛ / ВЫК	4 (2) A / 24 В перем. тока*
11 K1	Управление циркуляционным насосом, ВКЛ / ВЫК	4 (2) A / 24 В перем. тока*
10	Напряжение питания 24 В перем. тока - (SN)	
9	Напряжение питания 24 В перем. тока - (SP)	
* Контактная группа реле: 4 A для омической нагрузки, 2 A для индуктивной нагрузки		

Установленные на заводе перемычки:
5 c 8,9 c 14 , L c 5 и L c $9, N$ c 10

Приложение А375.1 (горелки 5-8):

Q Трансформатор с двойной изоляцией (двухкамерный)

Приложение А375.2 - максимум 2 шага горелки, Р4 является циркуляционным насосом в контуре ГВС
Приложение А375.3 - максимум 2 шага горелки, Р4 является циркуляционным насосом в контуре отопления 2

Трансформатор с двойной изоляцией (двухкамерный)

Инструкция ECL Comfort 210 / 310, приложение A275 / A375

Клемма		Описание	Макс. нагрузка
19		Фаза для аварийной сигнализации и горелки В2	
18		Авария (A1)	4 (2) A / 24 В перем. тока*
17	B2	Горелка, ВКЛ / ВЫК	4 (2) A / 24 В перем. тока*
16		Фаза для насоса P4	
	K4	Управление циркуляционным насосом	4 (2) A / 24 В перем. тока*
14		Фаза для управления насосами и горелкой	
13	K3	Управление насосом нагрева ГВС, контур 2 (А375.2) или контур 3 (А375.3)	4 (2) A / 24 В перем. тока*
12	B1	Горелка, ВКЛ / ВЫК	4 (2) A / 24 В перем. тока*
11	K1	Управление циркуляционным насосом, ВКЛ / ВЫК, контур 1	4 (2) A / 24 В перем. тока*
10		Напряжение питания 24 В перем. тока - (SN)	
9		Напряжение питания 24 В перем. тока - (SP)	
8		Фаза для выхода предохранительного клапана с электроприводом М1	
7	M1	Предохранительный клапан с электроприводом, направление контура ГВС, контур 2 (A375.2) или контур 3 (А375.3)	1 A / 24 В перем. тока
6	M1	Предохранительный клапан с электроприводом, направление контура отопления, контур 2 (A375.2) или контур 3 (А375.3)	1 A / 24 В перем. тока
5		Фаза для регулирующего клапана с электроприводом М2, контур 2	
4	M2	Регулирующий клапан с электроприводом - открытие, контур 2 (А375.3)	1 A / 24 В перем. тока
	M2	Регулирующий клапан с электроприводом - закрытие, контур 2 (А375.3)	1 A / 24 В перем. тока
* Ko	ктн	группа реле: 4 А для омической нагрузки, 2 А для индуктивной нагрузки	

Установленные на заводе перемычки:
5 с 8, 9 с 14, L с 5 и L с 9, N с 10

Альтернативное соединение для P3 / M1, предохранительного клапана:

Приложение А375.2 / A375.3 (шаги горелки 3-6):

Трансформатор с двойной изоляцией (двухкамерный)

Клемма	Описание	Макс. нагрузка
48	Фаза для горелки В3	
$47 \quad$ B3	Горелка, ВКЛ / ВЫК	4 (2) A / 24 В перем. тока*
46	Не используется	
45	Фаза для горелки В4	
44 B4	Горелка, ВКЛ / ВЫК	4 (2) A / 24 В перем. тока*
43	Не используется	
42	Фаза для горелки В5	
41 B5	Горелка, ВКЛ / ВЫК	4 (2) A / 24 В перем. тока*
40	Фаза для горелки В6	
39 B6	Горелка, ВКЛ / ВЫК	4 (2) A / 24 В перем. тока*
* Контактная группа реле: 4 А для омической нагрузки, 2 А для индуктивной нагрузки		

Приложение А375.2 / A375.3 (шаги горелки 7-8)

Q Трансформатор с двойной изоляцией (двухкамерный)
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Клемма } & \text { Описание } & \text { Макс. нагрузка } \\
\hline 5 & \text { Фаза для регулирования шагов горелки 7 и 8 } & \\
\hline 4 & \text { Подключение для регулирующего клапана с электроприводом - открытие, контур 2 (АЗ75.3) } & \begin{array}{l}1 \text { А / } 24 \text { В перем. } \\
\text { тока }\end{array} \\
\hline 3 & \text { Подключение для регулирующего клапана с электроприводом - закрытие, контур 2 (АЗ75.3) } & \begin{array}{l}1 \text { А / } 24 \text { В перем. } \\
\text { тока }\end{array} \\
\hline 2 & \text { К7 } & \text { Вспомогательное реле для регулирования шага горелки 7 }\end{array}
$$ \begin{array}{l}1 А / 24 В перем.

тока\end{array}\right]\)| 1 А / 24 В перем. |
| :--- |
| тока |

4

Не подключайте напрямую к регулятору с питанием ~24 В компоненты с напряжением ~230 В. Используйте вспомогательные реле (К) для разделения ~ 230 В и ~ 24 В.

S0

Сечение провода: 0.5-1.5 мм²
Неправильное подключение может привести к повреждению электронных выходов.
Макс. 2×1.5 мм 2 провода может быть подключено к каждой винтовой клемме.

Инструкция

2.5.5 Электрические соединения, датчики температуры Pt 1000 и сигнализаторы

A275:

Клемма	Датчик / описание		Тип (реком.)
29 и 30	S1	Датчик температуры наружного воздуха*	ESMT
28 и 30	S2	Только A275.3: Датчик температуры обратки, контур 2	ESM-11 / ESMB / ESMC / ESMU
27 и 30	S3	Датчик температуры котла**, контур 1	ESMU / ESMB
26 и 30	S4	Только A275.3: Датчик температуры подачи**, контур 2	ESM-11 / ESMB / ESMC / ESMU
25 и 30	S5	Датчик температуры обратки, контур 1	ESM-11/ESMB / ESMC / ESMU
24 и 30	S6	Только A275.2 / A275.3: Датчик температуры в баке ГВС, контур 2 / 3	ESM-11 / ESMB / ESMC / ESMU
23 и 30	S7	Датчик комнатной температуры***, контур 1	ESM-10
22 и 30	S8	Только A275.3: Датчик комнатной температуры**, контур 2	ESM-10

* Если датчик температуры наружного воздуха не подключен или в кабеле произошло короткое замыкание, регулятор считает температуру наружного воздуха равной 0 (нулю) ${ }^{\circ} \mathrm{C}$.
** Для правильного функционирования системы датчик температуры котла / подачи должен быть подключен всегда. Если датчик не подключен или в кабеле произошло короткое замыкание, регулирующий клапан с электроприводом закрывается (функция безопасности).
*** Только для подключения датчика комнатной температуры. Сигнал комнатной температуры может также подаваться устройством дистанционного управления (ЕСА 30). См. "Электрические соединения, ECA 30".

Установленная на заводе перемычка:
30 с общей клеммой.

A375:

Клемма	Датчик / описание		$\begin{aligned} & \text { Tип } \\ & \text { (реком.) } \end{aligned}$
29 и 30	S1	Датчик температуры наружного воздуха*	ESMT
28 и 30	S2	Только А375.3: Датчик температуры обратки, контур 2	ESM-11 / ESMB / ESMC / ESMU
27 и 30	S3	Датчик температуры котла**, контур 1	ESMU / ESMB
26 и 30	S4	Только А375.3: Датчик температуры подачи**, контур 2	ESM-11 / ESMB / ESMC / ESMU
25 и 30	S5	Датчик температуры обратки, контур 1	ESM-11 / ESMB / ESMC / ESMU
24 и 30	S6	Только А375.2 / A375.3: Датчик температуры в баке ГВС, контур 2 / 3	ESM-11 / ESMB / ESMC / ESMU
23 и 30	S7	Датчик комнатной температуры***, контур 1	ESM-10
22 и 30	S8	Только А375.3: Датчик комнатной температуры***, контур 2	ESM-10
20 и 30	S10	Сигнал напряжения (0-10 B) для дистанционного управления требуемой температурой котла, контур 1.	

* Если датчик температуры наружного воздуха не подключен или в кабеле произошло короткое замыкание, регулятор считает температуру наружного воздуха равной 0 (нулю) ${ }^{\circ} \mathrm{C}$.
** Для правильного функционирования системы датчик температуры котла / подачи должен быть подключен всегда. Если датчик не подключен, или в кабеле произошло короткое замыкание, регулирующий клапан с электроприводом закрывается (функция безопасности).
*** Только для подключения датчика комнатной температуры. Сигнал комнатной температуры может также подаваться устройством дистанционного управления (ЕСА 30). См. "Электрические соединения, ECA 30".

Установленная на заводе перемычка:
30 с общей клеммой.

Инструкция

Только A375:

Подача сигнала напряжения (0-10 В) для дистанционного управления требуемой температурой котла.

की

Сечение провода для присоединения датчика: Мин. 0.4 мм². 2. Суммарная длина кабеля: макс. 200 м (все датчики, включая внутреннюю коммуникационную шину ECL 485)
Использование кабелей длиной более 200 м может стать причиной чувствительности к помехам (ЭМС).

2.5.6 Электрические соединения, ЕСА 30 / 31

Клемма	Клемма $\text { \| ECA } 30 \text { / } 31$	Описание	Тип (реком.)
30	4	Витая пара	Кабель 2 x витая пара
31	1		
32	2	Витая пара	
33	3		
	4	Внешний датчик комнатной температуры*	ESM-10
	5		

* После подключения внешнего датчика комнатной температуры ECA 30 / 31 необходимо перезапустить.

Связь с ЕСА 30 / 31 необходимо настроить в параметре "ECA адр." регулятора ECL Comfort.

Сам датчик ECA 30 /31 необходимо настроить соответственно.
После настройки приложения ECA 30 /31 будет готов к работе через 2-5 минут. В ЕСА 30 / 31 при этом отображается индикатор выполнения.

Информационное сообщение ECA:
«Приложение требует более нового ECA»:
Программное обеспечение вашего ECA не соответствует программному обеспечению вашего регулятора ECL Comfort Свяжитесь с местным представителем компании Danfoss.

ol

Суммарная длина кабеля: макс. 200 м (все датчики, включая внутреннюю коммуникационную шину ECL 485)
Использование кабелей длиной более 200 м может стать причиной чувствительности к помехам (ЭМС).

Макс. два ECA 30 могут быть подсоединены к регулятору ECL Comfort или к системам ведущих / ведомых регуляторов с несколькими регуляторами ECL Comfort.

os

Суммарная длина кабеля: макс. 200 м (все датчики, включая внутреннюю коммуникационную шину ECL 485)
Использование кабелей длиной более 200 м может стать причиной чувствительности к помехам (ЭМС).

Инструкция

2.5.7 Электрические соединения, системы с управляемыми устройствами

Регулятор может использоваться в качестве ведущего или ведомого через внутреннюю коммуникационную шину ECL 485 (2 кабеля витой пары).

Коммуникационная шина ECL 485 несовместима с шиной BUS в ECL Comfort 110, 200, 300 и 301!

Клемма	Описание	Тип (реком.)
30	Общая клемма	
31	+12 В, коммуникационная шина ECL 485	Кабель $2 x$ витая пара
32	В, коммуникационная шина ECL 485	

아

Суммарная длина кабеля: макс. 200 м (все датчики, включая внутреннюю коммуникационную шину ECL 485)
Использование кабелей длиной более 200 м может стать причиной чувствительности к помехам (ЭМС)

2.5.8 Электрические соединения, связь

Электрические соединения, Modbus

Электрические соединения, M-bus

2.6 Вставка ключа программирования ECL

2.6.1 Вставка ключа программирования ECL

Ключ программирования ECL содержит в себе следующее:

- приложение и его подтипы
- доступные на данный момент языки
- заводские настройки: например, графики, требуемые температурные значения, ограничения и т.п. Заводские настройки всегда можно восстановить
- память для пользовательских настроек: специальных пользовательских или системных настроек.

После включения регулятора могут возникнуть следующие ситуации:

1. В заводскую поставку ключ программирования ECL Comfort не входит.
2. В регулятор уже загружено приложение и работает. Ключ программирования ECL установлен, но приложение необходимо изменить.
3. Для настройки регулятора необходима копия настроек другого регулятора.

아

В пользовательские настроек входят: требуемая комнатная температура, требуемая температура ГВС, расписание, график отопления, ограничения и т.п.

В системные настройки входят такие как: настройка связи, яркость дисплея и т.п.

Ключ программирования: ситуация 1

В заводскую поставку ключ программирования ECL

Comfort не входит.

На дисплее показывается анимированное изображения ключа программирования. Вставьте ключ программирования.
На дисплей выводится имя и версия ключа (например, A266 Ver. 1.03).
Если данный ключ не подходит к вашему регулятору, на дисплее поверх изображения ключа доступа будет показан крест.

Примеры:

Действие:	Цель:
\checkmark	Выберите язык
M_{7}	Подтвердите
${ }^{2}$	Выберите приложение
B	Подтвердите, выбрав «Да»
\bigcirc	Установите время и дату Поворачивайте и нажимайте диск, чтобы выбрать и изменить параметры «Часы», «Минуты», «День», «Месяц» и «Год».
	Выберите «Дальше»
(197)	Подтвердите, выбрав «Да»
8	Перейдите на «Летнее время» Выберите включение или выключение«Летнее время»

* «Летнее время» - это параметр, управляющий автоматическим переходом с зимнего времени на летнее и обратно.
В зависимости от содержимого ключа программирования ECL запустится либо процедура A, либо процедура B:

A

Ключ программирования ECL содержит заводские настройки:
Регулятор считает и передаст данные с ключа на регулятор ECL.
Приложение будет установлено, и регулятор перезагружен.

B

Ключ программирования ECL содержит измененные системные настройки:
Нажмите еще раз диск.
«НЕТ»: На регулятор будут скопированы только заводские настройки с ключа программирования ECL.
«ДА»*: На регулятор будут скопированы специальные системные настройки (отличающиеся от заводских настроек).

Если ключ содержит пользовательские настройки: Нажмите еще раз диск.
«НЕТ»: На регулятор будут скопированы только заводские настройки с ключа программирования ECL.
«ДА»*: На регулятор будут скопированы специальные пользовательские настройки (отличающиеся от заводских установок).

[^3]A.999 Ver. 1.01

Dansk
Polski
Svenska

- Русский

A999 Ver. 1.01

Прилож. A.266.1
Установлено

Функции ключа	[10
Копировать:	
B	KEY
Системные	- ДA
Пользовательск	HET

Начало записи

Прилож. A266.1
Установлено

Ключ программирования: ситуация 2

 В регулятор уже загружено приложение и работает. Ключ программирования ECL установлен, но приложение необходимо изменить.Для переключения на другое приложения в ключе программирования ECL текущее приложение в регуляторе должно быть удалено.

Помните, ключ программирования должен быть вставлен!

Основная	呬	MENU	四
MENU:		Функции ключа:	
Архие		- Новое прилож.	
Выбор евххода		Приложение	
- Функции ключа		Заводские	
Система		Копировать	
		06зор ключа	

Регулятор перезагрузится и будет готов к настройке.
Выполните процедуру, описанную в ситуации 1.

Ключ программирования：ситуация 3

Для настройки регулятора необходима копия настроек другого регулятора．
Данная функция используется в следующих целях
－для сохранения（резервного копирования）специальных пользовательских и системных настроек
－когда необходимо настроить другой регулятор ECL Comfort такого же типа（210 или 310），используя то же приложение， где пользовательские или системные настройки отличаются от заводских．

Копирование на другой регулятор ECL Comfort：

Действие：	Lель： Выберите «МЕНю» Подтвердите	Примеры：
Выберите переключение контуров		

Основная

MENL：

Архии

Вы6ор еыхода
Функции ключа

Система

MENU

Функции ключа：

Приложение

Заводские
－Копировать 06sop ключа

Функции ключа

Копировать：

$\mathrm{B} \quad \mathrm{KEY}$
Системные дA Пользовательск．НЕТ Начало записи

2.6.2 Ключ программирования ECL, копирование данных

Общие принципы

Когда регулятор включен и работает, можно проверить и изменить все или некоторые из его общих настроек. Новые настройки можно сохранить на ключе.

Заводские настройки можно всегда восстановить.
Как обновить ключ программирования ECL после изменения настроек?
Все новые настройки можно сохранить на ключе программирования ECL.

Как сохранить заводские настройки из ключа программирования на регуляторе?
Ознакомьтесь с разделом по использованию ключа программирования в ситуации 1: В заводскую поставку ключ программирования ECL Comfort не входит.

Не вынимайте ключ программирования ECL из регулятора в процессе копирования. Данные на ключе могут быть повреждены!

Как сохранить персональные настройки из регулятора на

 ключе?Ознакомьтесь с разделом по использованию ключа программирования в ситуации 3: Для настройки регулятора необходима копия настроек другого регулятора.

Главным правилом является то, что ключ программирования ECL должен всегда находиться в регуляторе. После изъятия ключа, настройки изменить невозможно.

2.7 Список проверочных операций

Готов ли регулятор ECL Comfort к работе?

Убедиться в том, что электропитание подключено к клеммам 9 (Фаза) и 10 (Нейтраль).
Проверить правильность подключения к клеммам управляемых компонентов (приводов, насосов и т.п.).
Проверить правильность подключения к клеммам всех датчиков и сигналов (см. "Электрические соединения").

Установить регулятор и включить питание.
Вставлен ли ключ программирования ECL (см. "Использование ключа программирования")?

Выбран ли правильный язык (см. "Язык" в "Общих настройках регулятора")?
Настроены ли правильные дата и время (см. "Время и дата" в "Общих настройках регулятора")?

Выбрано ли правильное приложение (см. "Определение типа системы")?
Проверить установку всех параметров регулятора (см. "Обзор параметров"), а также соответствие заводских установок вашим требованиям.

Выбрать режим ручного управления (см. "Ручное управление"). Проверить закрытие и открытие всех клапанов, а также запуск и остановку всех важных управляемых компонентов (насос и т.п.) при ручном управлении.

Проверить, чтобы температура и сигналы, отображаемые на дисплее, соответствовали подключенным компонентам.

После проверки ручного управления выберите режим работы регулятора (по расписанию, комфортный, экономный, или защита от разморозки).

2.8 Навигация, ключ программирования ECL A275

Навигация, A275, контуры 1, 2 и 3

Навигация, A275, контуры 1, 2 и 3, продолжение

Начало	Номера ID			Функция	Приложение A275						
				$\begin{array}{\|c\|} \hline \text { A275.1 } \\ \hline \begin{array}{c} \text { Кон- } \\ \text { тур } \end{array} \\ \hline \end{array}$	A275.2 Контур		A275.3				
							онт				
МЕНЮ				1	1	2	1	2	3		
Настройки Приложение	$\begin{aligned} & 11010 \\ & 11017 \\ & 11050 \\ & \\ & 11500 \\ & 11022 \\ & \\ & \\ & 11077 \\ & 11078 \\ & 11040 \\ & 11093 \\ & 11141 \\ & 11142 \end{aligned}$	1201 1205 1205 1204 1250 1202 1202 1205 1207 1207 1207 1204 1209 1214 1214	$\begin{aligned} & 13051 \\ & 13053 \\ & 13041 \\ & 13500 \end{aligned}$ 13093 13141 13142		ЕСА адрес Смещение Режим работы P Клапан / Насос Бак, под. / обр. Пробег Р ГВС Передать Т треб. Тренир. P Тренир. М Приоритет ГВС Т защ. цирк. Р Т нар. вкл. P Т под. вкл. Р Пробег P Т защиты Внеш. вход Тип режима			-		-	\bullet \bullet \bullet \bullet \bullet \bullet \bullet
Праздники					\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	
Авария Измерение Т		$\begin{aligned} & 1214 \\ & 12148 \\ & 12149 \\ & 12150 \end{aligned}$		Макс. разница Мин. разница Задержка Т аварии мин.					$\stackrel{+}{\bullet}$		
Обзор аварий									\bullet		
Антибактерия										\bullet	
Обзор влияний Т под. треб. Т треб. ГВС					\bullet	-	\bullet	\bullet	\bullet	\bullet	

Инструкция

Навигация, приложение A275, общие настройки регулятора

Начало МЕНЮ Время и дата		Приложение A275, общие настройки регулятора				
		ID	Функция	A275.1	A275.2	A275.3
			Изменяемый	\bullet	\bullet	\bullet
Праздники			Изменяемый	\bullet	\bullet	\bullet
Обзор вход 1			Т нар. Акк. Т нар. Т комн. Т котла Т обр.		$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	
Обзор вход 2			Т нар. Акк. Т нар. Т комн. Т под. Т обр. Т бака		\bullet	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$
Обзор вход 3			Т бака			\bullet
Архив 1 (датчики)	Т нар. Т комн. Т комн. и треб. Т котла и треб. Т обр. и огр.		Архив сегодня Архив вчера Архив за 2 дня Архив за 4 дня	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		
Архив 2 (датчики)	Т нар. Т комн. Т под. и треб. Т обр. и огр. Т бака и треб.		Архив сегодня Архив вчера Архив за 2 дня Архив за 4 дня		\bullet	
Архив 3 (датчики)	Т бака и треб.		Архив сегодня Архив вчера Архив за 2 дня Архив за 4 дня			\bullet
Выбор выхода			$\begin{aligned} & \text { P1 } \\ & \text { B1 } \\ & \text { M2 } \\ & \text { P4 } \\ & \text { P3 } \\ & \text { A1 } \end{aligned}$			

Навигация, приложение A375, общие настройки регулятора, продолжение

Начало			Приложение	регулято		
МЕНЮ		Номер ID	Функция	A275.1	A275.2	A275.3
Функции	Новое прилож.		Удалить	-	\bullet	\bullet
	Приложение			\bullet	\bullet	\bullet
	Заводские		Системные	\bullet	\bullet	\bullet
			Пользовательск.	\bullet	\bullet	\bullet
			К заводским	\bullet	\bullet	\bullet
	Копировать		B	\bullet	\bullet	\bullet
			Системные	\bullet	\bullet	\bullet
			Пользовательск.	\bullet	\bullet	\bullet
			Начало записи	\bullet	\bullet	\bullet
	Обзор ключа			\bullet	\bullet	\bullet
Система	Версия ECL		Кодовый N	\bullet	\bullet	\bullet
			Прибор	\bullet	\bullet	\bullet
			Программа	\bullet	\bullet	\bullet
			N сборки	\bullet	\bullet	\bullet
			Серийный N	\bullet	\bullet	\bullet
			Дата произв.	\bullet	\bullet	\bullet
	Расширение			\bullet	\bullet	\bullet
	Ethernet					
	Конфиг. портала					
	M-bus конфиг.					
	Тепловычислитель			\bullet	\bullet	\bullet
	Необработанные			\bullet	\bullet	\bullet
	Авария		Измерение Т			
	Дисплей	60058	Подсветка	\bullet	\bullet	\bullet
		60059	Контраст	\bullet	-	\bullet
	Коммуникации	38	Modbus адрес	\bullet	\bullet	\bullet
		2048	ECL 485 адр.	-	\bullet	-
		2150	Сервис pin	-	\bullet	\bullet
		2151	Внеш. сброс	\bullet	\bullet	\bullet
	Язык	2050	Язык	\bullet	\bullet	\bullet

Навигация, А375, контуры 1, 2 и 3

Навигация, А375, контуры 1, 2 и 3, продолжение

Навигация, приложение A375, общие настройки регулятора

Начало МЕНЮ Время и дата		Приложение A375, общие настройки регулятора				
		ID	Функция	A375.1	A375.2	A375.3
			Изменяемый	\bullet	\bullet	\bullet
Праздники			Изменяемый	\bullet	\bullet	\bullet
Обзор вход 1			Т нар. Акк. Т нар. Т комн. Т котла Т обр. Т внеш. треб.			
Обзор вход 2			Т нар. Акк. Т нар. Т комн. Т под. Т обр. Т бака		\bullet	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$
Обзор вход 3			Т бака			\bullet
Архив 1 (датчики)	Т нар. Т комн. Т комн. и треб. Т котла и треб. Т обр. и огр.		Архив сегодня Архив вчера Архив за 2 дня Архив за 4 дня			
Архив 2 (датчики)	Т нар. Т комн. Т под. и треб. Т обр. и огр. Т бака и треб.		Архив сегодня Архив вчера Архив за 2 дня Архив за 4 дня		\bullet	
Архив 3 (датчики)	Т бака и треб.		Архив сегодня Архив вчера Архив за 2 дня Архив за 4 дня			
Выбор выхода			P1 B1 B2 B3 B4 B6 B7 B8 M2 P4 P3 A1	\bullet		

Навигация, приложение A375, общие настройки регулятора, продолжение

3.0 Ежедневное использование

3.1 Переход по меню

Для перехода к необходимому виду регулятора используется диск，вращаемый вправо или влево．（○＇）．

Диск оборудован акселератором．Чем быстрее вращается диск，тем быстрее достигаются крайние значения диапазонов установки．

Индикатор положения на дисплее（ャ）постоянно показывает текущее положение．

Для подтверждения выбора необходимо нажать на диск（䧄）．
В следующем примере показано двухконтурное приложение： контур отопления（II）и контур горячего водоснабжения（ГВС） （ェ）．Данные примеры могут отличаться от вашего случая．

Некоторые основные настройки，применимые ко всему регулятору，находятся в отдельной части регулятора．

Переход к «Общим настройкам регулятора»：

Действие：Цель：
Выберите «МЕНЮ» в любом контуре Примеры：

MENU
Подтвердите
Выберите переключатель контуров в правом верхнем углу дисплея．

Подтвердите
Выберите «Общие настройки регулятора»

Подтвердите

Выбор контура

Осноеная

MENLI：

Время \＆дата
Праэдники
О6sop exoдов
Apxue
Вы $6 о р$ енхода

3.2 Чтение дисплея регулятора

В данном разделе дано общее описание функции для ECL Comfort серии 210 / 310. Представленные данные являются типичными и не зависят от варианта применения. Они могут отличаться от данных в вашем случае.

Выбор избранного вида

Избранным видом является тот, который пользователь выбрал как вид по умолчанию. Избранный вид отображает информацию по температурам или агрегатам, за которыми пользователь желает вести наблюдение.

Если диск не вращался в течение 20 минут, регулятор автоматически переходит на вид, выбранный по умолчанию.

Контур отопления III

На дисплее обзора 1 отображаются следующие сведения: текущая температура наружного воздуха, режим работы регулятора,
текущая комнатная температура, требуемая комнатная температура.

На дисплее обзора 2 отображаются следующие сведения: текущая температура наружного воздуха, направление изменения температуры наружного воздуха, режим работы регулятора, макс. и мин. значения температуры наружного воздуха, начиная с полночи, а также требуемая комнатная температура.

На дисплее обзора 3 отображаются следующие сведения: дата, текущая температура наружного воздуха, режим работы регулятора, требуемая комнатная температура, а также комфортный график на текущий день.

На дисплее обзора 4 отображаются следующие сведения: состояние управляемых компонентов, текущая температура теплоносителя, (требуемая температура теплоносителя), режим регулятора, температура обратки (ограничение температуры).

В зависимости от выбранного дисплея, на обзоре контура отопления может отображаться следующая информация:

- текущая температура наружного воздуха (-0,5)
- режим работы регулятора (㳽)
- текущая комнатная температура $(24,5)$
- требуемая комнатная температура $\left(20,7^{\circ} \mathrm{C}\right)$
- изменение температуры наружного воздуха ($\boldsymbol{\lambda} \rightarrow \downarrow$)
- мин. и макс. значения температуры наружного воздуха за время после полуночи (乞)
- дата (23.02.2010)
- время (7:43)
- графики комфортной температуры для текущего дня (0-1224)
- состояние управляемых компонентов (M2, P2)
- текущая температура теплоносителя ($49{ }^{\circ} \mathrm{C}$), (требуемая температура теплоносителя ($50^{\circ} \mathrm{C}$)
- температура обратки ($24^{\circ} \mathrm{C}$) (предельная температура (50))

Дисплей обзора 2:

Дисплей обзора 4:

Инструкция

На дисплее обзора 1 отображаются следующие сведения: текущая температура ГВС, режим регулятора, требуемая температура ГВС, а также комфортный график на текущий день.

На дисплее обзора 2 отображаются следующие сведения: состояние управляемых компонентов, текущая температура ГВС, (требуемая температура ГВС), режим регулятора, температура обратки (предельное значение).

В зависимости от выбранного вида, на дисплее обзора контура ГВС может отображаться следующая информация:

- текущая температура ГВС (50.3)
- режим работы регулятора (濋)
- требуемая температура ГВС ($50^{\circ} \mathrm{C}$)
- графики комфортной температуры для текущего дня (0-12-

24)

- состояние управляемых компонентов(М1, Р1)
- текущая температура ГВС ($50^{\circ} \mathrm{C}$), (требуемая температура ГВС $\left(50^{\circ} \mathrm{C}\right.$)
- температура обратки (- ${ }^{\circ} \mathrm{C}$) (ограничение температуры (30))

Установка требуемой температуры

В зависимости от выбранного контура и режима работы, можно ввести все настройки по дням прямо на дисплеях состояния (обозначения символов см. на след.стр.).

Дисплей обзора 2:

Необходимо обязательно установить требуемую комнатную температуру, даже если датчик комнатной температуры или устройство дистанционного управления не подсоединен.

Если вместо температуры отображается

"- -" соответствующий датчик не подсоединен.
"- - -" короткое замыкание соединения датчика.

Установка требуемой комнатной температуры

Задать требуемую комнатную температуру можно прямо на обзорном дисплее контура отопления.

Действие: Цель:

На обзорном дисплее отображается температура наружного воздуха, текущая и требуемая комнатная температура.

На примере дисплея изображен режим комфорта. Для изменения требуемой комнатной температуры в режиме изменения требуемой комнатной температуры в режиме
экономии, выберите переключатель режимов и установите режим экономии.

Требуемая комнатная температура

Подтвердите

Установите требуемую температуру воздуха в помещении

Подтвердите
Примеры:

Установка требуемой температуры ГВС

Задание требуемой температуры ГВС производится на экранах обзора контура ГВС.

Действие: Цель:
Примеры:

Требуемая температура ГВС50

Подтвердите

Установите требуемую температуру ГВС

(An)

Подтвердите

Кроме информации о требуемой и действительной температуре ГВС на данном экране отображается сегодняшняя программа работы.

На примере экрана показано, что в текущий момент времени регулятор ECL Comfort работает по программе и в режиме комфорта.

III 1

MENL

- ---

Необходимо обязательно установить требуемую комнатную температуру, даже если датчик комнатной температуры или устройство дистанционного управления не подсоединен.

Установка требуемой комнатной температуры , ЕСА 30 /

 ECA 31Задание требуемой комнатной температуры осуществляется так же, как в регуляторе. Однако, на дисплее могут быть отображены другие обозначения (см. «Что означают символы?»).

∞

В модулях ECA 30 / ECA 31, посредством функций замены, можно временно изменять требуемую комнатную температуру,

3.3 Общий обзор：Что означают данные символы？

Символ	Описание	
¢d	Т нар．	
\hat{l}	Комнатная температура	Температура
표	Температура ГВС	
	Индикатор положения	
（－）	Режим работы по	Режим
淡	Режим комфорта	
）	Режим экономии	
茹	Режим защиты от замерзания	
cin	Ручной режим	
(Режим ожидания－ охлаждения	
	Активный выбор выхода	
III	Контур	отопления
$\xrightarrow{\square}$	ГВС	
$\square 0$	Общие настройки регулятора	
（1）	Насос включен	Управляемый элемент
（1）	Насос выключен	
$\stackrel{+}{4}$	Привод открывается	
＊	Привод закрывается	
\square	Авария	
Q	Разъем управляющего датчика температуры	
ロー－－	Переключатель экранов	
\wedge	Макс．и мин．значения	
$\lambda \rightarrow \downarrow$	Изменение температуры наружного воздуха	
－	Датчик скорости ветра	

Символ	Описание
－－	Датчик не подключен или не используется
－－－	Короткое замыкание в цепи датчика
$\frac{4}{7-23}$	Закрепленный комфортный день（праздники）
\uparrow	Активное воздействие
$\stackrel{\bigcirc}{+}$	Отопление включено
$\stackrel{\ominus}{\square}$	Охлаждение включено

Дополнительные символы，ECA 30：

Символ	Описание
$\square 0$	Устройство дистанционного управления ЕСА
念	Относительная влажность в помещении
苞	Выходной
溉	Праздники
宊	Отдых（расширенный комфортный период）
¢	Пониженная мощность（расширенный экономный период）

3.4 Контроль температур и компонентов системы

В данном разделе дано общее описание функции для ECL
Comfort серии 210 / 310. Представленные данные являются типичными и не зависят от варианта применения. Они могут отличаться от данных в вашем случае.

Контур котла IIII

Экран обзора контура котла обеспечивает быстрое отображение действительных и (требуемых) температур, а также действительного состояния компонентов системы.

Пример экрана:

$49^{\circ} \mathrm{C}$	Температура котла
(45)	Требуемая температура котла
$25^{\circ} \mathrm{C}$	Температура обратки
(35)	Ограничение температуры обратки

Пример экрана приведен из приложения A375 с четырьмя котлами. В приложениях A275 на экране отображается только один котел.

Контур отопления III

Дисплей обзора в контуре отопления обеспечивает быстрый просмотр реальных и (требуемых) температур, а также реальное состояние компонентов системы.

Пример дисплея:

$49^{\circ} \mathrm{C}$	Температура подачи
(31)	Заданная температура подачи
$24^{\circ} \mathrm{C}$	Температура обратки
(50)	Ограничение температуры в обратном трубопроводе

Контур ГВС 포

Экран обзора контура ГВС обеспечивает быстрое отображение действительных и (требуемых) температур, а также действительного состояния компонентов системы.

Пример экрана (теплообменник):

$50^{\circ} \mathrm{C}$	Температура подачи
(50)	Требуемая температура подачи
--	Температура обратки: датчик не подключен
(30)	Ограничение температуры обратки

Пример экрана (бак ГВС):

$49{ }^{\circ} \mathrm{C}$	Температура в баке ГВС
(50)	Требуемая температура в баке ГВС

Обзор входа \square ■

Еще одним способом быстрого просмотра измеряемых температур является «Обзор входа», который можно найти в общих настройках регулятора (способ входа в общие настройки регулятора см. в разделе «Описание общих настроек регулятора»).

Поскольку в данном обзоре (см. образец дисплея) указываются только действительные значения температуры, он доступен только для чтения.

Пример экрана с теплообменником:

Пример экрана с баком ГВС:

MENU	(1)
O6sop exogoe:	
T Hap.	$-0.5{ }^{\circ} \mathrm{C}$
T комн.	$24.5{ }^{\circ} \mathrm{C}$
Т под, отопл.	$49.6{ }^{\circ} \mathrm{C}$
Т под, ГВС	$50.3{ }^{\circ} \mathrm{C}$
T о6path.	$24.6{ }^{\circ} \mathrm{C}$

3.5 Обзор влияния

В данном разделе дано общее описание функции для ECL Comfort серии 210 / 310. Представленные данные являются типичными и не зависят от варианта применения. Они могут отличаться от данных в вашем случае.

В меню дан обзор влияний на расчет требуемой температуры подачи. В различных вариантах приложения перечисленные параметры могут отличаться.

Если один или несколько параметров оказывают влияние (корректируют) на заданную температуру подачи, такое влияние показывается маленькой стрелкой, направленной вниз, вверх или двойной стрелкой:

Стрелка вниз:
Данный параметр уменьшает заданную температуру подачи.
Стрелка вверх:
Данный параметр увеличивает заданную температуру подачи.

Двойная стрелка:

Данный параметр осуществляет перенастройку (например, праздничные дни).

Прямая линия:
Активное влияние отсутствует.
В примере стрелка направлена вниз рядом с параметром "Огр. комнатной". Это значит, что текущая температура воздуха в помещении выше заданной температуры воздуха в помещении, что, в свою очередь, приводит к уменьшению заданной температуры подачи теплоносителя.

MEN: NL

IIII

* Т под, треб.

Т под, треб.:

Огранич, обратн, Ограни'н, комн, Параллельная Огр. Расх/Энерг. Праэдник

3.6 Ручное управление

В данном разделе дано общее описание функции для ECL Comfort серии 210 / 310. Представленные данные являются типичными и не зависят от варианта применения. Они могут отличаться от данных в вашем случае.

Установленными компонентами можно управлять вручную.
Ручное управление можно включить только на избранных дисплеях, на которых отображаются символы управляемых компонентов (клапан, насос и т.п.).
Действие: Цель:

∞

При работе в ручном режиме все управляющие функции деактивируются. Защита от разморозки не работает.

При включении ручного управления одним контуром, он автоматически включается для всех остальных контуров.

Для выхода из режима ручного управления воспользуйтесь переключателем режимов для перехода в нужный режим. Нажмите диск.

Ручное управление обычно используется при вводе установки в эксплуатацию. Проверяется работа управляемых компонентов, клапана, насоса и т.п.

3.7 Расписание

3.7.1 Установите свой график

В данном разделе дано общее описание программы для ECL
Comfort серии 210 / 310. Представленные данные являются типичными и не зависят от варианта применения. Они могут отличаться от данных в вашем случае. В некоторых применениях может быть больше одной программы. Дополнительные программы находятся в общих настройках регулятора.

График состоит из 7-дневной недели:
П $=$ Понедельник
В $=$ Вторник
С $=$ Среда
Ч $=$ Четверг
П $=$ Пятница
$C=$ Суббота
В $=$ Воскресенье

График показывает время начала и окончания комфортного периода (контур отопления и контур ГВС) для каждого дня недели.

Изменение графика:

| Действие: Цель: | Примеры: |
| :--- | :--- | :--- |
| Выберите пункт «МЕНю» на любом | |
| дисплее обзора. | MENU |

[^4]Введенные значения времени начала и окончания будут действовать для всех отмеченных дней (в данном примере, это четверг и суббота).

Максимально на один день позволяется задать до 3 комфортных периодов. Для удаления комфортного периода следует установить одинаковое значение времени начала и окончания.

MENU
III 1
Расписание:

MENU
 [1] 1

Расписание:
День: П В С 픔
Ctapt1 05:00 Cтоп1 10:00

MENU血1
Расписание:

Каждый контур обладает отдельным графиком. Для выбора другого контра, перейдите на начальный экран, и, поворачивая диск, выберите необходимый контур.

Время начала и окончания изменяется с шагом в полчаса (30 мин.).

4.0 Обзор настроек

В пустых столбцах рекомендуется записывать все производимые изменения параметров.

Настройки	ID	Страница	Заводские установки контура(ов)							
			1		2		3		-1	
График		107	1.0							
Т макс. (макс.темпер.предел подачи)	11178	108	$90^{\circ} \mathrm{C}$							
T мин. (миним.темпер.предел подачи)	11177	108	$10^{\circ} \mathrm{C}$							
Т внеш. треб. - (ECL Comfort 310)		109								
Влиян. - макс. (огранич. Т комн., макс)	11182	110	-4.0							
Влиян. - мин. (огранич.Т комн. мин.)	11183	111	0.0							
Врем. адапт. (время адаптации)	11015	111	ВЫК							
Тнар. макс. X1 (огранич.темп.обратки, верхний предел, ось X)	11031	112	$15^{\circ} \mathrm{C}$							
Огр. мин Y1 (огранич.темп.обратки, нижний предел, ось Y)	11032	112	$40^{\circ} \mathrm{C}$							
Тнар. мин. X2 (огранич.Т обратки, нижний предел, ось X)	11033	113	$-15^{\circ} \mathrm{C}$							
Огр. макс. Y2 (огранич. Т обратки, верхний предел, ось Y)	11034	113	$60^{\circ} \mathrm{C}$							
Макс. влияние (Т огранич. обр. - макс.влиян.)	11035	113	0.0							
Мин. влияние (Т огранич.обр. - мин.влияние)	11036	113	0.0							
Врем. адапт. (время адаптации)	11037	114	25 c							
Приоритет (приоритет ограничения Т обр. теплоносителя)	11085	114	ВЫК							
Авто сохр. (поддерж. температуры в зависимости от темп. наруж. воздуха)	11011	115	$-15^{\circ} \mathrm{C}$							
Натоп	11012	115	ВЫК							
Оптимум (постоянная времени оптимизации)	11014	$\underline{116}$	ВЫК							
Пред-останов (оптимизированное время останова)	11026	116	ВКЛ							
Основание (оптимизация, основанная на Т комн. или Т наружного воздуха)	11020	117	HAP.							
Полн. откл.	11021	117	Вык							
Стоп отопл. (граница выключения отопления)	11179	118	$20^{\circ} \mathrm{C}$							
Разница	11046	119	8 K							
Макс. Т огр.	11049	119	$90^{\circ} \mathrm{C}$							
Мин. время ВКЛ	11071	119	0 мин							
Тип последовательности (приложения A375)	11072	120	3							
Стоп при Т нв	11038	120	ВЫК							
Защита	11047	121	ВЫК							
Граница Т под. (приложения А375)	11048	$\underline{122}$	20 K							
Реакц. вне гран. (вне границ) (приложения А375)	11074	$\underline{122}$	60 c							
Реакц. в границе (приложения A375)	11075	$\underline{123}$	120 c							
Шаги (приложения A375)	11073	123	1							
Адр. ЕСА (выбор устройства удаленного управления)	11010	124	ВЫК							
Смещение	11017	124	Вык							
Режим работы P	11050	$\underline{124}$	ВЫК							
Передать Т треб.	11500	125	ВЫК							
Р тренир. (Тренировка насоса)	11022	125	ВКЛ							
Т защ. P	11077	125	$2^{\circ} \mathrm{C}$							
Т вкл. P (тепловая нагрузка)	11078	125	$20^{\circ} \mathrm{C}$							
Пробег P	11040	126	3 мин							
"Защита" Т (Т защиты от замерзания)	11093	$\underline{126}$	$10^{\circ} \mathrm{C}$							

5.0 Параметры, контур 1

5.1 Температура подачи (котла)

Регулятор ECL Comfort определяет и регулирует температуру подачи (котла) в зависимости от температуры наружного воздуха. Эта зависимость называется отопительным графиком.

Этот график определяется по 6 координатным точкам. Требуемая температура подачи задается относительно 6 заранее определенных значений температуры наружного воздуха.

Приведенное ниже значение отопительного графика является приблизительным значением, основанным на действительных настройках.

Т нар.	Треб. темп. подачи (котла)			Ваши настройки
	A	B	C	
$-30{ }^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$95^{\circ} \mathrm{C}$	
$-15{ }^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	
$-5^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	
$0^{\circ} \mathrm{C}$	$32{ }^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	
$5^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	
$15{ }^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$28{ }^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	

A: Пример с системой напольного отопления
B: Заводские настройки
С: Пример для радиаторной системы отопления

График			
Контур	Диапазон настроек	Заводские	
$\mathbf{1}$	$\mathbf{0 . 1} \ldots \mathbf{4 . 0}$	$\mathbf{1 . 0}$	

Отопительный график может быть изменен двумя способами:

1. Изменение значения наклона (см. примеры отопительного графика на след. стр.)
2. Изменены координаты отопительного графика.

Изменение значения наклона:

С помощью поворотной кнопки введите или измените значение наклона графика (например: 1.0).

Если наклон графика изменен через значение наклона, общей точкой всех графиков будет требуемая температура подачи (котла) $=24.6^{\circ} \mathrm{C}$ при температуре наружного воздуха $=20^{\circ} \mathrm{C}$

Изменение координат:

С помощью поворотной кнопки введите или измените координаты графика (например: -30,75).

График представляет собой требуемые значения температуры подачи (котла) для разной температуры наружного воздуха при требуемой комнатной температуре $20^{\circ} \mathrm{C}$.

При изменении требований к комнатной температуре значение требуемой температуры подачи (котла) также изменится:
(Треб. комнат. темп. - 20) $\times \mathrm{HC} \times 2.5$, где "HC" - отопительный график, а " 2.5 " - константа.

Настройка	典1
Т подачи:	
График	1.0
Т макс.	$90^{\circ} \mathrm{C}$
Т мин.	$10^{\circ} \mathrm{C}$

Изменения наклона
T подачи \quad [1]

Изменения координат

Расчетная температура подачи (котла) может изменяться функциями "Натоп", "Скорость" и т.п.

Пример:

График:	1.0
Треб. темп. подачи (котла):	$50^{\circ} \mathrm{C}$
Треб. комнатная темп.:	$22^{\circ} \mathrm{C}$
Расчет: $(22-20) \times 1.0 \times 2.5=$	5

Результат:
Требуемая температура подачи (котла) будет скорректирована с $50^{\circ} \mathrm{C}$ до $55^{\circ} \mathrm{C}$.

График представляет собой значения требуемой температуры подачи для разных температур наружного воздуха при требуемой комнатной температуре $20^{\circ} \mathrm{C}$.

Маленькие стрелки ($\mathbf{~ () ~ у к а з ы в а ю т ~} 6$ разных значений температуры наружного воздуха, при которых можно менять отопительный график

Т макс. (макс.темпер.предел подачи)				$\mathbf{1 1 1 7 8}$
Контур	Диапазон	Заводская		
1	$\mathbf{1 0} \ldots \mathbf{1 5 0}^{\circ} \mathrm{C}$	$\mathbf{9 0}^{\circ} \mathbf{C}$		

Установите максимальное значение температуры подачи в системе. Температура подачи не должна быть выше указанного значения. При необходимости измените заводские настройки.

\mathbf{T} мин. (миним.темпер.предел подачи)		$\mathbf{1 1 1 7 7}$
Контур	Диапазон	Заводская
$\mathbf{1}$	$\mathbf{1 0} \ldots \mathbf{1 5 0}^{\circ} \mathbf{C}$	$\mathbf{1 0}^{\text {º }} \mathbf{C}$

Установите минимальное значение температуры подачи в системе. Температура подачи не должна быть ниже указанного значения. При необходимости измените заводские настройки.

Внешний сигнал для требуемой температуры подачи

Напряжение ($0-10$ B) может подаваться на входную клемму S10 для определения требуемой температуры подачи.

Измеренное напряжение на входе S10 затем преобразуется регулятором в значение температуры. При увеличении напряжения увеличивается требуемая температура подачи.

Для настройки измерения установите следующие настройки.

Т внеш. треб. - (ECL Comfort 310)				
Контур	Диапазон настроек	Заводские		
$\mathbf{1}$	Только чтение			
Действительное значение требуемой температуры подачи указано $\boldsymbol{\varepsilon}^{\circ}$ С.				

Чтение:

--: Сигнал внешнего напряжения не подан.
${ }^{\circ} \mathrm{C}$: Сигнал внешнего напряжения преобразован в требуемую температуру подачи.

Выберите соответствующее меню и введите значения входного напряжения (1 и 10 вольт) и отображаемую требуемую температуру подачи.

Требуемая температура подачи: 10 ... $120^{\circ} \mathrm{C}$
Фиксированные настройки
1 В и 10 В напряжения:
Заводские настройки:
$(1,10)$ и $(10,100)$

Это значит, что "Требуемая температура подачи" составляет $10^{\circ} \mathrm{C}$ при 1.0 В и $100^{\circ} \mathrm{C}$ при 10 В.

Обычно чем больше напряжение, тем выше отображаемая требуемая температура подачи.

Пример: Зависимость между входным напряжением и отображаемой требуемой температурой подачи.

T под. треб. (${ }^{\circ} \mathrm{C}$)

В данном примере показано, что 1 вольт соответствует $10.0^{\circ} \mathrm{C}$, а 10 вольт соответствуют $100^{\circ} \mathrm{C}$.

Т подачия
III 1

Енеш. треб.:

Сигнал внешнего напряжения должен быть выше 1.0 В для обеспечения переключения.

5.2 Ограничение комнатной

Этот раздел относится к случаям, когда в комнате установлен датчик комнатной температуры или устройство дистанционного управления.

Регулятор подстраивает требуемую температуру подачи для уменьшения разницы между требуемой и действительной комнатной температурой.

Если комнатная температура выше требуемого значения, требуемая температура подачи должна быть уменьшена.

Параметр "Макс. влияние" (влияние, максимальная комнатная температура) определяет, насколько температура подачи должна быть уменьшена.

Используйте это влияние, чтобы не допускать превышения комнатной температуры. Регулятор обеспечивает экономию тепла за счет использования солнечного излучения или тепла от камина и т.д.

Если комнатная температура ниже требуемого значения, требуемая температура подачи должна быть увеличена

Параметр "Мин. влияние" (влияние, минимальная комнатная температура) определяет, насколько температура подачи должна быть увеличена.

Используйте этот тип влияния, чтобы не допускать чрезмерного понижения комнатной температуры. Это понижение может вызываться, например, ветреными условиями

Нормальным значением будет -4.0 для "Макс. влияния" и 4.0 для "Мин. влияния".

Параметр "Макс. влияние" и "Мин. влияние" определяют, как комнатная температура может влиять на требуемую температуру подачи.

50

Если процент "Влиян." слишком большой и/или "Время оптимиз." слишком маленькое, появляется риск некорректного управления.

Пример 1:

Фактическая комнатная температура на 2 градуса выше.
Параметр "Макс. влияние" устанавливается на -4.0.
Параметр "Мин. влияние" устанавливается на 0.0.
Наклон составляет 1.8 (см. "График" в разделе "Температура подачи").
Результат:
Требуемая температура подачи меняется на ($2 \mathrm{x}-4.0 \times 1.8$) - 14.4 градусов.

Пример 2:

Действительная комнатная температура на 3 градуса ниже нормы.
Параметр "Макс. влияние" устанавливается на -4.0.
Параметр "Мин. влияние" устанавливается на 2.0.
Наклон составляет 1.8 (см. "График" в "Температура подачи").
Результат:
Требуемая температура подачи меняется на ($3 \times 2.0 \times 1.8$) 10.8 градусов.

Влиян. - макс. (огранич. Т комн., макс)		11182
Контур	Диапазон	Заводская
1	-9.9 ... 0.0	-4.0
Определяет степень влияния (уменьшения) на заданную температуру подачи, если реальная комнатная температура превышает требуемую (регулятор P).		

-9.9: Комнатная температура оказывает большое влияние.
0.0: Комнатная температура не оказывает влияния.

Инструкция

Влиян. - мин. (огранич.Т комн. мин.)		11183
Контур	Диапазон	Заводская
1	0.0 9.9	0.0
Определяет степень влияния (увеличения) на заданную температуру подачи, если реальная комнатная температура ниже требуемой (регулятор P).		

0.0: Комнатная температура не оказывает влияния.
9.9: Комнатная температура оказывает большое влияние.

Врем. адапт. (время адаптации)		
Контур	Диапазон	Заводская
$\mathbf{1}$	ВЫК / 1 ... 50 с	ВЫК
Регулирует скорость адаптации фактической комнатной температуры к заданной комнатной температуре (регулятор I).		

[^5]ВЫК: Параметр "Врем. адапт." никак не влияет на работу регулятора.
1: Заданная комнатная температура адаптируется быстро.
50: Заданная комнатная температура адаптируется медленно.

5.3 Ограничение обратного

Ограничение температуры обратки может быть основано на температуре наружного воздуха. Соотношение между этими температурами задается с помощью координат двух точек в системе.

Координаты температуры наружного воздуха задаются параметрами "Т нар. макс. X1" и "Т нар. мин. X2". Координаты температуры обратки устанавливаются в "Т обр. макс. Y2" и "Т обр. мин. Y1".

Если температура обратки оказывается выше или ниже установленного предела, регулятор автоматически изменяет требуемую температуру котла / подачи для получения приемлемой температуры обратки.

Данное ограничение основывается на PI регулировании, где P (процент "Влиян.") быстро реагирует на отклонения, a I ("Время оптимиз.") реагирует медленнее и постепенно устраняет небольшие отклонения действительных значений от требуемых. Это достигается изменением требуемой температуры котла / подачи.

Тнар. макс. X1 (огранич.темп.обратки, верхний предел, ось X)		
Контур	Диапазон	Заводская
1	-60 ... $20{ }^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$
Установите значение температуры наружного воздуха для нижней границы температуры возвращаемого теплоносителя.		

Соответствующая координата Y установлена в параметре "Огр. мин. Y1".

Огр. мин Y1 (огранич.темп.обратки, нижний предел, 11032 ocb Y)		
Контур	Диапазон	Заводская
1	10 ... $150{ }^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
Установите ограничение температуры в обратном трубопроводе, соответствующее температуре наружного воздуха, заданной параметром "Тнар. макс. X1".		

\&)

Если процент "Влиян." слишком большой и/или "Время оптимиз." слишком маленькое, появляется риск некорректного управления.

Соответствующая координата X задается параметром "Тнар. макс. X1".

Тнар. мин. X ось X)	ижний пред	11033
Контур	Диапазон	Заводская
1	-60 ... $20{ }^{\circ} \mathrm{C}$	$-15{ }^{\circ} \mathrm{C}$
Установите значение температуры наружного воздуха для верхней границы температуры возвращаемого теплоносителя.		

Соответствующая координата Y установлена в параметре "Огр. макс. Y2".

Oгр. макс. Y2 (огранич. Т обратки, верхний предел, ось Y)		
Контур	$\mathbf{1 1 0 3 4}$	
$\mathbf{1}$	$\mathbf{1 0} \ldots \mathbf{1 5 0}^{\circ} \mathbf{C}$	$\mathbf{6 0}^{\circ} \mathbf{C}$
Установите ограничение температуры в обратном трубопроводе, соответствуюшее температуре наружного воздуха, заданной параметром "Тнар. мин. Х2".		

Соответствующая координата X задается параметром "Тнар. мин. X2".

Макс. влияние (Т огранич. обр. - макс.влиян.)				$\mathbf{1 1 0 3 5}$
Контур	Диапазон установки	Заводская		
$\mathbf{1}$	$-\mathbf{9 . 9}$... 9.9	$\mathbf{0 . 0}$		
Определяет степень влияния на требуемую температуру подачи, если температура обратного теплоносителя превышает расчетные пределы.				

Влияние более 0:

Заданная температура подачи повышается, если температура обратного теплоносителя превышает расчетные ограничения.

Влияние менее 0 :
Заданная температура подачи понижается, если температура обратного теплоносителя превышает расчетные ограничения.

Пример

Ограничение Т обратн. устанавливается на $50^{\circ} \mathrm{C}$.
Влияние устанавливается на -2.0.
Фактическая температура возврата на $2^{\circ} \mathrm{C}$ выше установленной.
Результат:
Заданная Т подачи изменяется на $-2.0 \times 2=-4.0$ градуса.

Пример

Ограничение активно ниже $50^{\circ} \mathrm{C}$.
Влияние устанавливается на -3.0.
Фактическая Т обратн. на 2 градуса ниже установленной. Результат:
Требуемая Т подачи изменяется на $-3.0 \times 2=-6.0$ градусов.

Определяет степень влияния на требуемую температуру подачи если температура обратного теплоносителя ниже расчетных ограничений.

Влияние более 0:
Требуемая температура подачи повышается, если температура обратного теплоносителя оказывается ниже расчетных ограничений.

Влияние менее 0:

Требуемая температура подачи понижается, если температура обратного теплоносителя оказывается ниже расчетных ограничений.

Sol

Обычно данный параметр равен 0 в системах централизованного теплоснабжения, так как высокая T обратного теплоносителя приемлема.
Обычно данный параметр выше 0 в системах с котлом, что позволяет избежать слишком низкой Т обратного теплоносителя (см. также "Макс. влияние").

Врем. адапт. (время адаптации)		11037
Контур	Диапазон	Заводская
$\mathbf{1}$	ВЫК / 1... 50 c	$\mathbf{2 5} \mathbf{~ c}$

Регулирует скорость адаптации температуры на возврате к заданному температурному пределу (регулятор И).

ВЫК: Параметр "Врем. адапт." никак не влияет на работу регулятора.
1: Заданная температура адаптируется быстро.
50: Заданная температура адаптируется медленно.

Приоритет (приоритет ограничения Т обр. теплоносителя)		11085
Контур	Диапазон	Заводская
1	ВКЛ / ВЫК	ВЫК

Выберите, желаете ли вы, чтобы ограничение температуры в обратном трубопроводе заменяло ограничение подачи "Т мин.".

ВКЛ: Минимальное ограничение температуры подачи

 отменяется.BЫК: Минимальное ограничение температуры подачи не отменяется

Функция адаптации может изменять заданную температуру подачи максимум на 8 K .

Инструкция

5.4 Оптимизация

Авто сохр. (поддерж. температуры в зависимости от 11011 темп. наруж. воздуха)		
Контур	Диапазон установки	Заводская настройка
1	ВЫК / -29 ... $10{ }^{\circ} \mathrm{C}$	$-15{ }^{\circ} \mathrm{C}$
При температуре наружного воздуха ниже установленного значения, установка температуры поддержания температуры не имеет значения. При температуре наружного воздуха выше установленного значения, температура поддерживается относительно температуры наружного воздуха. Данная функция используется в системах централизованного теплоснабжения во избежание больших перепадов температуры после периода энергосбережения.		

ВЫК: Температура в режиме экономии не зависит от температуры наружного воздуха.
-29 ... 10: Температура в режиме экономии зависит от температуры наружного воздуха. При температуре наружного воздуха выше $10^{\circ} \mathrm{C}$ понижение составит 100\%. Чем ниже температура наружного воздуха, тем меньше понижение температуры. Если температура наружного воздуха ниже установленной границы, то понижение температуры отсутствует.

Температуры комфорта и экономии указаны в примерах. Разница между температурой комфорта и экономии считается равной 100%. В зависимости от температуры наружного воздуха, процентное значение может быть меньше в соответствии со значением параметра "Auto saving".

Пример:

Тнар.:
$-5^{\circ} \mathrm{C}$
Требуемая Т комн. в режиме КОМФОРТ: $22^{\circ} \mathrm{C}$
Требуемая Т комн. в режиме ЭКОНОМ: $16{ }^{\circ} \mathrm{C}$
Значение "Авто сохр.": $-15^{\circ} \mathrm{C}$

На рисунке выше показано, что процент понижения при температуре наружного воздуха $-5{ }^{\circ} \mathrm{C}$ равен 40%.

Разница между температурами комфорта и экономии равна (22-16) $=6$ градусов.
40% от 6 градусов $=2.4$ градуса
Температура режима экономии корректируется до (22-2.4) = $19.6^{\circ} \mathrm{C}$.

Натоп				11012
Контур	Диапазон	Заводская		
$\mathbf{1}$	ВЫК / 1 ... 99\%	ВЫК		
Сокращение периода прогрева путем увеличения температуры подачи на установленную величину в процентах.				

ВЫК: Функция натопа не включена.
1-99\%: Заданная температура подачи временно повышается на установленную величину в процентах.

Для того, чтобы сократить период прогрева после периода температуры экономии, заданная температура подачи может быть временно увеличена (макс. 1 час). При оптимизации натоп осуществляется в период оптимизации (см. "Оптимум").

Если установлен датчик комнатной температуры или ECA 30 / 31, прогрев прекращается при достижении значения температуры воздуха в помещении.

Оптимум (постоянная времени оптимизации)		11014
Контур	Диапазон	Заводская
1	вык / 10 ... 59	вык

Оптимизирует время запуска и останова в режиме комфортной температуры для получения наилучших условий при наименьшем энергопотреблении.
Чем меньше температура наружного воздуха, тем раньше происходит включение режима комфортной температуры.
Режим оптимизации выключения отопления может быть либо автоматическим, либо отключен. Расчетное время включения и выключения основывается на значении постоянной времени оптимизации.

Настройте постоянную времени оптимизации
Значение состоит из двух цифровых разрядов. Эти цифры имеют следующие значения (цифра $1=$ Таблица I, цифра $2=$ Таблица II)/

> Вык: Оптимизации нет. Запуск и останов отопления в момент времени, определяемый отопительным графиком.
10... 59: См. таблицы I и II.

Таблица I:

Левая цифра	Аккумуляция тепла в здании	Тип системы
$1-$	малая	Радиаторная система
$2-$	бредняя	
$3-$	средьшая	Системы напольного отопления
$4-$	большая	

Таблица II:

Правая цифра	Измерение температуры	Емкость
-0	$-50^{\circ} \mathrm{C}$	большая
-1	$-45^{\circ} \mathrm{C}$	\cdot
\cdot	\cdot	\cdot
-5	$-25^{\circ} \mathrm{C}$	нормальная
\cdot	\cdot	\cdot
-9	$-5^{\circ} \mathrm{C}$	малая

Измерение температуры:

Наименьшая температура наружного воздуха (обычно определяется проектировщиком вашей системы с учетом конструкции системы отопления), при которой системой отопления может быть достигнута заданная температура.

Пример

Тип системы - радиаторная, аккумуляция тепла в здании - средняя.
Левая цифра равна 2.
Проектная температура равна $-25^{\circ} \mathrm{C}$, а емкость нормальная.
Правая цифра равна 5.
Результат:
Параметр необходимо изменить на 25.

Пред-останов (оптимизированное время останова)				$\mathbf{1 1 0 2 6}$
Контур	Диапазон	Заводская		
$\mathbf{1}$	ВЫК / ВКЛ	ВКЛ		

ВЫК: Оптимизированное время останова не используется.
ВКЛ: Оптимизированное время останова используется.

Основание (оптимизация, основанная на Т комн. или			
T наружного воздуха)	11020		
Контур	Диапазон	Заводская	
1	НАР./КОМН.	НАР.	

Расчет оптимизированного времени включения и отключения может основываться на комнатной температуре или температуре наружного воздуха.

HAP: Оптимизация на основе температуры наружного воздуха. Используется, если комнатная температура не измеряется.
KOMH.: Оптимизация на основе комнатной температуры (если она измеряется).

Полн. откл.				11021
Контур	Диапазон	Заводская		
$\mathbf{1}$	ВыК / вКл	ВыК		
Следует выбрать, хотите ли вы производить полное отключение в период экономии тепла.				

ВЫК: Полного отключения нет. Заданная температура подачи уменьшается по следующим параметрам: - требуемая комнатная температура в режиме экономии

- автоэкономия

ВКЛ: Заданная температура подачи уменьшается до значения параметра "Защита". Циркуляционный насос отключается, но система защиты от замораживания продолжает работать (см. "Т защ. P").

Минимальное ограничение расхода тепла ("Т мин.") отменяется, когда параметр "Полн. откл." имеет значение ВКЛ.

Инструкция

Стоп отопл. (граница выключения отопления)		11179
Контур	Диапазон	Заводская
1	вык / 1 ... $50{ }^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$

Отопление может отключаться, когда температура наружного воздуха поднимается выше установленного значения. Клапан закроется, и по окончании остаточной работы выключится циркуляционный насос. Действие параметра "Т мин." будет отменено.

Система отопления вновь активизируется при достижении установленной разницы между действующей наружной и аккумулированной температурами.

Данная функция позволяет экономить энергопотребление.
Установите значение температуры наружного воздуха, при которой вы хотите отключить систему отопления.

5

Выключение отопления активировано только, когда регулятор работает по программе. Когда параметр выключения имеет значение ВЫК, отключения отопления не происходит.

Инструкция

5.5 Котел

Разница		11046
Контур	Диапазон настроек	Заводские
1	(ВЫК /) 1 ... 50 K	8 K

Горелка включается и выключается для поддержания требуемой температуры котла. Установите разницу между температурой включения и выключения.

BbIK:
(Только в приложениях A275):
Разница температуры котла устанавливается автоматически в соответствии с кратковременной нагрузкой котла и температурными условиями в системе отопления.

1 ... 50 K: Разница температуры котла устанавливается на заданное значение в соответствии с техническими условиями изготовителя котла.

[^6]| Макс. Т огр. | | 11049 |
| :---: | :---: | :---: |
| Контур | Диапазон настроек | Заводские |
| 1 | $40 . . .150{ }^{\circ} \mathrm{C}$ | $90^{\circ} \mathrm{C}$ |
| Приложения A275: | | |
| Если температура котла / подачи превышает установленное значение, то горелка выключается. | | |
| Приложения А375: | | |
| Если температура котла / подачи превышает установленное значение, то горелки выключаются с интервалом 5 с. | | |

Параметр "Макс. Т огр." отменяет параметр "Мин. время ВКЛ".

40 ... 150: Установите ограничение температуры.

Мин. время ВКЛ		$\mathbf{1 1 0 7 1}$
Контур	Диапазон настроек	Заводские
$\mathbf{1}$	$\mathbf{0}$... $\mathbf{9}$ мин	$\mathbf{0}$ мин
Установите минимальное время (в минутах) работы горелки.		

[^7]Котел может быть защищен от конденсации /
9 мин: коррозии, вызываемой недостаточным временем прогрева при каждом пуске горелки. Защита обеспечивается минимальным временем работы горелки. С данной настройкой смещение температур котла (номер ID 11046 "Разница") отменяется.

Тип последовательности (приложения А375)				$\mathbf{1 1 0 7 2}$
Контур	Диапазон настроек	Заводские		
$\mathbf{1}$	$\mathbf{0} \ldots 4$	$\mathbf{3}$		
Установите тип последовательности для системы с котлом.				

Код:
0

Последовательность котлов с автоматическим переключением главного котла.

1

Последовательность котлов с 1 фиксированным главным котлом и автоматическим переключением дополнительных котлов.

2

Последовательность котлов с 2 фиксированными главными котлами и автоматическим переключением дополнительных котлов.

3

Фиксированная последовательность котлов.
4
Последовательность двушаговых котлов с автоматическим переключением главного котла.

Стоп при Т нв		11038
Контур	Диапазон настроек	Заводские
1	-49 ... $49{ }^{\circ} \mathrm{C} /$ ВЫК	ВЫК

Приложения А275:
Если температура наружного воздуха поднимается выше установленного значения, то горелка не включается.

Приложения А375:
Если температура наружного воздуха поднимается выше установленного значения, то последний шаг горелки не включается.

S

Переключение осуществляется после полуночи. Тем не менее, переключение на следующий главный котел осуществляется при естественном выключении котла (см. пример).

Символ ' $\boldsymbol{\eta}$ ' в примерах типа последовательности указывает на количество шагов горелок в системе.

S0

A375.1:
B1 - B4 регулируются с помощью регулятора ECL Comfort B5 - B8 регулируются с помощью модуля ECA 32

A375.2 / A375.3
B1 - B2 регулируются с помощью регулятора ECL Comfort
B3 - B6 регулируются с помощью модуля ЕСА 32
B7 - B8 регулируются с помощью регулятора ECL Comfort

∞

Функция "Стоп при Т нв" может использоваться с альтернативными источниками теплоснабжения, такими как тепловые насосы и системы солнечного отопления.
-49 ... 49: Установите значение блокирования последнего шага горелки.
ВыК: Функция "Стоп при Т нв" выключена.

Защита		11047
Контур	Диапазон настроек	Заводские
$\mathbf{1}$	ВЫК / ВКЛ	ВЫК

Выберите необходимость выключения циркуляционного насоса контура котла (P1) для предотвращения конденсации в котле в период прогрева.

BЫК: Циркуляционный насос регулируется в зависимости от тепловой нагрузки.

Циркуляционный насос включается, когда:

- требуемая температура подачи (котла) выше, чем установленное значение "Т под. вкл. P" (номер ID 11078), или
. температура наружного воздуха ниже, чем установленное значение "Т нар. вкл. P" (номер ID 11077).

ВКЛ: Циркуляционный насос выключен до достижения минимальной требуемой температуры подачи (котла).

Минимальная температура подачи (котла) устанавливается в "Т мин." (номер ID 11177).

Обычно период прогрева котла на жидком топливе должен быть как можно короче. Это уменьшит конденсацию в топке.

Для обеспечения наилучших условий для котла циркуляционный насос (P1) может быть выключен на период прогрева.

Циркуляционный насос включается, когда действительная температура подачи (котла) выше, чем минимальная требуемая температура подачи (котла), установленная в "Т мин." (номер ID 11177), + половина разницы температуры котла в параметре "Разница" (номер ID 11046).

Циркуляционный насос вновь выключается, если действительная температура подачи (котла) ниже, чем минимальная требуемая температура подачи (котла), установленная в "Т мин." (номер ID 11177).

Пример:

"Т мин." $=45^{\circ} \mathrm{C}$ и "Разница" $=8 \mathrm{~K}$
Циркуляционный насос включается, если действительная температура подачи (котла) выше $45+0.5 \times 8=49^{\circ} \mathrm{C}$.
Циркуляционный насос выключается, если температура подачи (котла) опускается ниже $45^{\circ} \mathrm{C}$.

Граница Т под. (приложения А375)				$\mathbf{1 1 0 4 8}$
Контур	Диапазон настроек	Заводские		
$\mathbf{1}$	$\mathbf{5} \ldots \mathbf{8 0} \mathbf{K}$	$\mathbf{2 0 ~ K}$		

Параметр "Граница T под." определяет, когда горелки включаются и выключаются при наличии смещения требуемой и действительной температур подачи (котла).

Если смещение больше установленного значения, то настройка в "Реакц. вне гран." (ID 11074) определяет регулирование шагов горелки. Если смещение меньше установленного значения, то настройка в "Реаки. в границе" (ID 11075) определяет регулирование шагов горелки.

5 ... $\mathbf{8 0}$ K: Установите параметр "Граница Т под.".

Реакц. вне г	приложения A37	11074
Контур	Диапазон настроек	Заводские
1	5 ... 6000 c	60 c
Установленное время (в секундах) определяет включение / выключение горелки, когда температура котла / подачи находится вне параметра "Граница T под." (номер ID 11048). Для включения / выключения следующего шага горелки должно быть выполнено два условия:		

5 ... 6000: Установите требуемое время:

На верхнем рисунке приведена стандартная ситуация включения ступеней горелки после периода экономии. Разница требуемой и действительной температуры котла/ подачи относительно велика, т.е. находится вне параметра "Граница Т под.".

На нижнем рисунке приведена стандартная ситуация выключения ступени горелки. Разница требуемой и действительной температуры котла / подачи относительно велика, т.е. находится вне параметра "Граница Т под.".

Если параметр "Макс. Т огр." (номер ID 11049) был превышен, то выключение ступеней горелки происходит каждые 5 секунд.

Реакц. в границе (приложения А375)					$\mathbf{1 1 0 7 5}$
Контур	Диапазон настроек	Заводские			
$\mathbf{1}$	$\mathbf{5} \ldots \mathbf{6 0 0 0}$ с	$\mathbf{1 2 0} \mathbf{c}$			

Установленное время (в секундах) определяет включение / выключение горелки, когда температура котла / подачи находится в пределах параметра "Граница T noд." (номер ID 11048).

Для включения / выключения следующей ступени горелки должно быть выполнено три условия:

- установленное время истекло после включения / выключения последней горелки;
- температура котла / подачи находится в пределах параметра "Граница T под.";
- изменение температуры котла / подачи было менее 1 К / мин (перепад температуры меньше 1 К/ мин).

5 ... 6000: Установите требуемое время:

На рисунке приведена стандартная ситуация, когда действительная температура котла / подачи относительно близка к требуемой температуре котла / подачи, т.е. находится в пределах параметра "Граница Т под.".\<!--Add more content here as required--\>

Шаги (приложения А375)				11073
Контур	Диапазон настроек	Заводские		
$\mathbf{1}$	$\mathbf{1}$... $\mathbf{8}$	$\mathbf{1}$		
Количество подлежащих регулированию шагов горелки. См. также "Тип последовательности".				

1 ... 8: Установите количество ступеней горелки.

5.6 Описание и область применения

Адр. ЕСА (выбор устройства удаленного управления)				$\mathbf{1 1 0 1 0}$
Контур	Диапазон	Заводская		
$\mathbf{1}$	ВЫК / А / В	ВЫК		

ВЫК: Устройство удаленного управления отсутствует. Используется только датчик комнатной температуры при наличии.
A: Устройство удаленного управления ECA $30 / 31$ с адресом А.
B: Устройство удаленного управления ECA 30 / 31 с адресом B.

Смещение	11017	
Контур	Диапазон установки	Заводская
$\mathbf{1}$	вык / 1 ... 20 к	вык

Заданная температура подачи в контуре отопления 1 может изменяться в соответствии с заданной температурой подачи с другого регулятора (управляемого) или другого контура.

ВЫК: Заданная температура подачи в контуре отопления 1 не изменяется никаким другим регулятором (управляемым или контура 2).
1 ... 20: Заданная температура подачи увеличивается на указанное в параметре «Смещение» значение, если потребление на ведомом регуляторе или в контуре 2 выше.

Режим работы P		11050
Контур	Диапазон настроек	Заводские
$\mathbf{1}$	ВЫК / вКл	ВыК

Выберите условия для циркуляционного насоса в контуре отопления.

ВЫК: Циркуляционный насос включается, когда требуемая температура подачи в контуре отопления выше, чем значение, установленное в настройке "Т под. вкл. Р".
ВКЛ: Циркуляционный насос включается, когда требуемая температура подачи с ведомых устройств выше, чем значение, установленное в настройке "Т под. вкл. Р".

Устройство удаленного управления должно быть настроено соответственно (А или В).

Функция «Смещение» позволяет компенсировать потерю тепла между основными и ведомыми системами.

Циркуляционный насос всегда регулируется в соответствии с режимом защиты от замерзания.

Передать т треб.		11500
Контур	Диапазон настроек	Заводские
$\mathbf{1}$	ВЫК / ВКл	ВЫК

Если регулятор является ведомым в системе ведущих / ведомых регуляторов, информация о требуемой температуре подачи теплоносителя посылается в ведущий регулятор по коммуникационной шине ECL 485.

BЫК: Информация о требуемой температуре подачи теплоносителя не посылается в ведущий регулятор.
ВКЛ: Информация о требуемой температуре подачи теплоносителя посылается в ведущий регулятор.

Параметр "Смещение" в ведущем регуляторе должен быть настроен на значение, чтобы среагировать на требуемую температуру подачи с ведомого регулятора.

Если регулятор является ведомым, ему должен быть присвоен адрес 1, 2, 3 ... 9 для того, чтобы отправлять требуемую температуру в ведущий регулятор (см. раздел "Дополнительно", "Несколько регуляторов в одной системе").

$\mathbf{1 1 0 2 2}$			
Контур тренир. (Тренировка насоса)	Диапазон	Заводская	
$\mathbf{1}$	ВЫК / ВКл	ВКЛ	
Включает насос, что позволяет избежать его блокировки при отключении теплоснабжения.			

BЫК: Профилактическое включение насоса не производится.
ВКЛ: Насос включается на одну минуту один раз в три дня в полдень (12:14 часов).

Т защ. P		11077
Контур	Диапазон	Заводская
1	ВЫК / -10 ... $20{ }^{\circ} \mathrm{C}$	$2{ }^{\circ} \mathrm{C}$
Когда температура наружного воздуха опускается ниже значения, установленного в параметре "Т защ. P", регулятор автоматически включает циркуляционный насос для защиты системы.		

BЫК: Защита от замерзания отключена.
-10 ... 20: Циркуляционный насос включается, когда температура наружного воздуха опускается ниже установленного значения.

Т вкл. P (тепловая нагрузка)		11078
Контур	Диапазон	Заводская
1	$5 \ldots 40{ }^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$
Когда заданная температура подачи превышает значение, установленное в параметре "Т вкл. P", регулятор автоматически включает циркуляционный насос.		

5 ... 40: Циркуляционный насос включается, когда температура подаваемого теплоносителя превышает установленное значение.

В обычных условиях система не защищена от замерзания при значении параметра меньше $0^{\circ} \mathrm{C}$ или OFF.
Для водяных систем рекомендуется значение параметра $2{ }^{\circ} \mathrm{C}$.

Инструкция

Пробег \mathbf{P}	$\mathbf{1 1 0 4 0}$	
Контур	Диапазон настроек	Заводские
$\mathbf{1}$	$\mathbf{0} \ldots \mathbf{9 9}$ мин	$\mathbf{3}$ мин

Циркуляционный насос в контуре отопления может быть включен на определенное время (мин) после прекращения теплоснабжения ($т р е б у е м а я ~ т е м п е р а т у р а ~ п о д а ч и ~ о п у с к а е т с я ~ н и ж е, ~ ч е м ~ з н а ч е н и е ~$ настройки "Т под. вкл. P" (номер ID 11078)).
Данная функция может использовать оставшееся тепло, например, в теплообменнике.

0: Циркуляционный насос выключается сразу же после прекращения теплоснабжения.
1 ... 99: Циркуляционный насос включается на заданное время после отключения теплоснабжения.

"Защита" \mathbf{T} (T защиты от замерзания)				$\mathbf{1 1 0 9 3}$
Контур	Диапазон	Заводская		
$\mathbf{1}$	$\mathbf{5} \ldots \mathbf{4 0}^{\circ} \mathbf{C}$	$\mathbf{1 0}^{\circ} \mathbf{C}$		

Установите заданную температуру подачи, например, при отключении отопления, общей остановке работы и т.n., для защиты системы от замерзания.

5 ... 40: Требуемая температура защиты от замерзания.

ВЫКЛ: Для внешнего переключателя не выбран ни один вход.
S1 ... S8: Вход, выбранный для внешнего переключателя.

Если один из входов S1...S6 выбран в качестве входа для внешнего переключателя, соответствующий переключатель должен иметь позолоченные контакты.
Если один из входов S 7 или $\mathrm{S8}$ выбран в качестве входа для переключателя, соответствующий переключатель может иметь стандартные контакты.

Пример подключения переключателя ко входу $\mathrm{S8}$ см. на рисунке.

Для подключения внешнего переключателя выбирайте только неиспользованные входы. Если для подключения внешенго переключателя будет назначен уже используемый вход, работа данного входа также будет прервана.

См. также «Внеш.реж.».

Внешний вход (внешний переключатель) - ECL 310				$\mathbf{1 1 1 4 1}$
Контур	Диапазон установки	Заводская		
$\mathbf{1}$	ВЫКл / S1 ... S10	ВЫКЛ		

Выберите вход для параметра «Внешний вход» (внешний переключатель). Посредством внешнего переключателя регулятор может быть принудительно переключен в комфортный режим работы или в режим сниженного энегопотребления.

ВЫКЛ: Для внешнего переключателя не выбран ни один

 вХод.S1 ... S10: Вход, выбранный для внешнего переключателя.

Если один из входов S1... S6 выбран в качестве входа для внешнего переключателя, соответствующий переключатель должен иметь позолоченные контакты.
Если один из входов S7 ... S10 выбран в качестве входа для внешнего переключателя, соответствующий переключатель может иметь стандартные контакты.

Пример подключения внешнего переключателя ко входу S9 см. на рисунке.

На приведенных рисунках показана работа данного параметра (переключение в комфортный режим и переключение в режим сниженного энергопотребления).

Для подключения внешнего переключателя выбирайте только неиспользованные входы. Если для подключения внешнего переключателя будет назначен уже используемый вход, работа данного входа будет также прервана.

См. также «Внеш.реж.».

Переключение в режим сниженного энергопотребления.

아

Результат переключения в режим сниженного энергопотребления зависит от настройки параметра «Полный останов».
Полный останов = ВЫК: Отопление понижается
Полный останов = ВКЛ: Отопление прекращается

Внеш. переключатель (режим внешней перенастройки)				11142
Контур	Диапазон установки	Заводская		
$\mathbf{1}$	КОМФОРТ/ЭКОНОМИя	КОМФОРТ		
Выберите режим внешней перенастройки.				

Принудительное переключение может быть использовано в комфортном периоде или режиме экономии.
Для переключения регулятор должен находиться в режиме работы по программе.

ЭКОНОМИЯ: При включении переключателя перенастройки, регулятор переходит в режим экономии.
КОМФОРТ): При включении переключателя перенастройки, регулятор переходит в режим комфорта.

6.0 Параметры, контур 2

6.1 Температура подачи

Регулятор ECL Comfort определяет и регулирует температуру подачи в зависимости от температуры наружного воздуха. Эта зависимость называется отопительным графиком.

Этот график определяется по 6 координатным точкам. Требуемая температура подачи задается относительно 6 определенных значений температуры наружного воздуха.

Приведенное ниже значение отопительного графика является приблизительным значением, основанным на действительных настройках.

T нар.	T под. треб.			Ваши настройки
	\mathbf{A}	\mathbf{B}	\mathbf{C}	
$\mathbf{- 3 0}{ }^{\circ} \mathbf{C}$	$45^{\circ} \mathrm{C}$	$\mathbf{7 5}{ }^{\circ} \mathbf{C}$	$95^{\circ} \mathrm{C}$	
$\mathbf{- 1 5}{ }^{\circ} \mathbf{C}$	$40^{\circ} \mathrm{C}$	$\mathbf{6 0}{ }^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	
$\mathbf{- 5}{ }^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$\mathbf{5 0}{ }^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	
$\mathbf{0}{ }^{\circ} \mathbf{C}$	$32^{\circ} \mathrm{C}$	$\mathbf{4 5}{ }^{\circ} \mathbf{C}$	$70^{\circ} \mathrm{C}$	
$\mathbf{5}{ }^{\circ} \mathbf{C}$	$30^{\circ} \mathrm{C}$	$\mathbf{4 0}{ }^{\circ} \mathbf{C}$	$60^{\circ} \mathrm{C}$	
$\mathbf{1 5}{ }^{\circ} \mathbf{C}$	$25^{\circ} \mathrm{C}$	$\mathbf{2 8}{ }^{\circ} \mathbf{C}$	$35^{\circ} \mathrm{C}$	

При необходимости измените требуемую температуру подачи при $-30,-15,-5,0,5$ и $15^{\circ} \mathrm{C}$.

A: Пример с системой напольного отопления

В: Заводские настройки

C: Пример для радиаторной системы отопления

График			
Контур	Диапазон настроек	Заводские	
$\mathbf{2}$	$\mathbf{0 . 1}$... 4.0	$\mathbf{1 . 0}$	

Отопительный график может быть изменен двумя способами:

1. Изменение значения наклона (см. примеры отопительного графика на след. стр.)
2. Изменены координаты отопительного графика.

Изменение значения наклона:

С помощью поворотной кнопки введите или измените значение наклона графика (например: 1.0).
Если наклон графика изменен через значение наклона, общей точкой всех графиков будет требуемая температура подачи = $24.6^{\circ} \mathrm{C}$ при температуре наружного воздуха $=20^{\circ} \mathrm{C}$

Изменение координат:

С помощью поворотной кнопки введите или измените координаты графика (например: -30,75).
График представляет собой требуемые значения температуры подачи для разной температуры наружного воздуха при требуемой комнатной температуре $20^{\circ} \mathrm{C}$.
При изменении требований к комнатной температуре, значение требуемой температуры подачи также изменится: (Треб. комнат. темп. -20) $\times \mathrm{HC} \times 2.5$, где "HC" - отопительный график, а "2.5" - константа.

Настройка	典1
Т подачи:	
График	1.0
Т макс.	$90^{\circ} \mathrm{C}$
Т мин.	$10^{\circ} \mathrm{C}$

Изменения наклона

Изменения координат

Расчетная температура подачи может изменяться функциями "Натоп", "Скорость" и т.п.

Пример:

График:	1.0
Треб. темп. подачи:	$50^{\circ} \mathrm{C}$
Треб. комнатная темп.:	$22^{\circ} \mathrm{C}$
Расчет: $(22-20) \times 1.0 \times 2.5=$	5

Расчет: $(22-20) \times 1.0 \times 2.5=$
5
Результат:
Требуемая температура подачи будет скорректирована с $50^{\circ} \mathrm{C}$ до $55^{\circ} \mathrm{C}$.

График представляет собой значения требуемой температуры подачи для разных температур наружного воздуха при требуемой комнатной температуре $20^{\circ} \mathrm{C}$.

Маленькие стрелки ($\mathbf{~}$) указывают 6 разных значений температуры наружного воздуха, при которых можно менять отопительный график.

Макс. Темп. (макс. т ограничения подачи)				$\mathbf{1 2 1 7 8}$
Контур	Диапазон установки	Заводская		
$\mathbf{2}$	$\mathbf{1 0} \ldots \mathbf{1 5 0}^{\circ} \mathbf{C}$	$\mathbf{4 5}^{\circ} \mathbf{C}$		

©
Параметр "Макс. Темп." имеет больший приоритет, чем "Мин.
Темп.".

Выберите максимальное допустимое для вашей системы значение температуры подачи.
При необходимости измените заводские настройки.

T мин. (миним.Т ограничения подачи)		$\mathbf{1 2 1 7 7}$
Контур	Диапазон установки	Заводская настройка
$\mathbf{2}$	$\mathbf{1 0 . . . ~} \mathbf{1 5 0}^{\circ} \mathbf{C}$	$\mathbf{1 0}^{\circ} \mathbf{C}$

Выберите минимальное допустимое для вашей системы значение температуры подачи.
При необходимости измените заводские настройки.

6.2 Температура в баке-аккумуляторе

Разница загр.		12193
Контур	Диапазон настроек	Заводские
2	1 ... 50 K	15 K
Значение в градусах выше требуемой температуры ГВС, которое обеспечивает требуемую температуру котла для нагрева ГВС.		

1... 50: Значение в градусах, которое необходимо добавить к требуемой температуре ГВС для получения требуемой температуры котла для нагрева ГВС.

∞

Требуемая температура ГВС взаимосвязана с датчиком температуры в баке.

Пример:

Требуемая температура
$55^{\circ} \mathrm{C}$
「BC:
Разница старт: -3 K
Результат:
Нагрев ГВС начинается при снижении температуры, измеренной датчиком температуры в баке (верхним), ниже $52^{\circ} \mathrm{C}$.

Разница стоп		12194
Контур	Диапазон настроек	Заводские
$\mathbf{2}$	$\mathbf{- 5 0} \ldots \mathbf{5 0} \mathbf{K}$	$\mathbf{3} \mathbf{~ K}$

Значение в градусах выше или ниже требуемой температуры ГВС, при котором нагрев ГВС прекратится.
-50 ... 50: Установите значение в градусах.

Пример с положительным значением "Разницы cmon":

Пример с отрицательным значением "Разницы стоп":

6.3 Ограничение комнатной

Этот раздел относится к случаям, когда в комнате установлен датчик комнатной температуры или устройство дистанционного управления.

Регулятор подстраивает требуемую температуру подачи для уменьшения разницы между требуемой и действительной комнатной температурой.

Если комнатная температура выше требуемого значения, требуемая температура подачи должна быть уменьшена.

Параметр "Макс. влияние" (влияние, максимальная комнатная температура) определяет, насколько температура подачи должна быть уменьшена.

Используйте это влияние, чтобы не допускать превышения комнатной температуры. Регулятор обеспечивает экономию тепла за счет использования солнечного излучения или тепла от камина и т.д.

Если комнатная температура ниже требуемого значения, требуемая температура подачи должна быть увеличена

Параметр "Мин. влияние" (влияние, минимальная комнатная температура) определяет, насколько температура подачи должна быть увеличена.

Используйте этот тип влияния, чтобы не допускать чрезмерного понижения комнатной температуры. Это понижение может вызываться, например, ветреными условиями.

Нормальным значением будет -4.0 для "Макс. влияния" и 4.0 для "Мин. влияния".

Параметр "Макс. влияние" и "Мин. влияние" определяют, как комнатная температура может влиять на требуемую температуру подачи.

Если процент "Влиян." слишком большой и/или "Время оптимиз." слишком маленькое, появляется риск некорректного управления.

Пример 1:

Фактическая комнатная температура на 2 градуса выше.
Параметр "Макс. влияние" устанавливается на -4.0.
Параметр "Мин. влияние" устанавливается на 0.0 .
Наклон составляет 1.8 (см. "График" в разделе "Температура подачи").
Результат:
Требуемая температура подачи меняется на ($2 \mathrm{x}-4.0 \times 1.8$)
-14.4 градусов.

Пример 2:

Действительная комнатная температура на 3 градуса ниже нормы. Параметр "Макс. влияние" устанавливается на -4.0.
Параметр "Мин. влияние" устанавливается на 2.0.
Наклон составляет 1.8 (см. "График" в "Температура подачи").
Результат:
Требуемая температура подачи меняется на ($3 \times 2.0 \times 1.8$)
10.8 градусов.

Макс. влияние (огранич. Т комн., макс)		12182
Контур	Диапазон установки	Заводская
2	-9.9 ... 0.0	-4.0
Определяет степень влияния (уменьшения) на требуемую температуру подачи, если реальная комнатная температура превышает требуемую (регулятор P).		

-9.9: Комнатная температура оказывает большое влияние.
0.0: Комнатная температура не оказывает влияния.

Инструкция

$\mathbf{~ М и н . ~ в л и я н и е ~ (о г р а н и ч . ~ Т ~ к о м н . ~ м и н .) ~}$				$\mathbf{1 2 1 8 3}$
Контур	Диапазон установки	Заводская		
$\mathbf{2}$	$\mathbf{0 . 0}$.... 9.9	$\mathbf{0 . 0}$		
Определяет степень влияния (увеличения) на требуемую температуру подач, если реальная комнатная температура ниже требуемой (регулятор Р).				

0.0: Комнатная температура не оказывает влияния.
9.9: Комнатная температура оказывает большое влияние.

Время оптимиз. (время адаптации)		12015
Контур	Диапазон установки	Заводская
$\mathbf{2}$	ВЫК / 1 ... 50 с	ВЫК

Регулирует скорость адаптации фактической комнатной температуры к требуемой комнатной температуре (регулятор I).

BЫK: Параметр "Время оптимиз." никак не влияет на работу регулятора.
1: Требуемая комнатная температура адаптируется быстро.

50: Требуемая комнатная температура адаптируется медленно

6.4 Ограничение обратного

Ограничение температуры обратки может быть основано на температуре наружного воздуха. Соотношение между этими температурами задается с помощью координат двух точек в системе.

Координаты температуры наружного воздуха задаются параметрами "Т нар. макс. X1" и "Т нар. мин. X2". Координаты температуры обратки устанавливаются в "Т обр. макс. Ү2" и "Т обр. мин. Y1".

Если температура обратки оказывается выше или ниже установленного предела, регулятор автоматически изменяет требуемую температуру котла / подачи для получения приемлемой температуры обратки.

Данное ограничение основывается на PI регулировании, где P (процент "Влиян.") быстро реагирует на отклонения, al ("Время оптимиз.") реагирует медленнее и постепенно устраняет небольшие отклонения действительных значений от требуемых. Это достигается изменением требуемой температуры котла / подачи.

Tнар. макс. X1 (огранич.темп.обратки, верхний предел, ось X)				$\mathbf{1 2 0 3 1}$
Контур	Диапазон установки	Заводская		
$\mathbf{2}$	$\mathbf{- 6 0} \ldots \mathbf{2 0}^{\circ} \mathbf{C}$	$\mathbf{1 5}^{\circ} \mathrm{C}$		
Установите значение температуры наружного воздуха для нижней границы температуры возвращаемого теплоносителя.				

Соответствующая координата Y установлена в параметре «Т обратн. мин.».

T обратн. мин. (огранич.темп.обратки, нижний предел, ось Y)					$\mathbf{1 2 0 3 2}$
Контур	Диапазон установки	Заводская			
$\mathbf{2}$	$\mathbf{1 0} \ldots \mathbf{1 5 0}^{\circ} \mathbf{C}$	$\mathbf{4 0}{ }^{\circ} \mathbf{C}$			
Установите ограничение температуры в обратном трубопроводе, соответствующее температуре наружного воздуха, заданной параметром «Тнар. макс. Х1».					

Если процент "Влиян." слишком большой и/или "Время оптимиз." слишком маленькое, появляется риск некорректного управления.

Соответствующая координата X задается параметром «Тнар. макс. X1».

Тнар. мин. X ось X)	ратки, нижний пред	12033
Контур	Диапазон установки	Заводская
2	$-60 . . .20{ }^{\circ} \mathrm{C}$	$-15{ }^{\circ} \mathrm{C}$
Установите значение температуры наружного воздуха для верхней границы температуры возвращаемого теплоносителя.		

Соответствующая координата Y установлена в параметре «T обратн. макс.».

T обратн. макс. (огранич. Т обратки, верхний предел, ось Y)	12034	
Контур	Диапазон установки	Заводская
$\mathbf{2}$	$\mathbf{1 0} \ldots \mathbf{1 5 0}^{\circ} \mathrm{C}$	$\mathbf{6 0}^{\circ} \mathbf{C}$

Установите ограничение температуры в обратном трубопроводе, соответствующее температуре наружного воздуха, заданной параметром «Тнар. мин. X2».

Соответствующая координата X задается параметром «Тнар. мин. X2».

Пример

Предел обратки устанавливается на $50^{\circ} \mathrm{C}$.
Влияние устанавливается на -2.0.
Фактическая температура обратки на $2^{\circ} \mathrm{C}$ выше установленной.
Результат:
Заданная температура подачи изменяется на $-2.0 \times 2=-4.0$ градусов.

Влияние более 0:

Т заданная подаваемого теплоносителя повышается, если \top обратн. превышает предел

Влияние менее 0:
Т заданная подачи понижается, если $Т$ обратн. превышает пределы

Влиян. - мин. (Т огранич.обратки - мин.влияние)				$\mathbf{1 2 0 3 6}$
Контур	Диапазон	Заводская		
2	$-9.9 \ldots 9.9$	$\mathbf{0 . 0}$		

Определяет степень влияния на Тзаданную подачи, если Тобратного теплоносителя ниже требуемого предела (см. "Огранич.").

Влияние более 0:
Т заданная подаваемого теплоносителя повышается, если Т возврата ниже предела.

Влияние менее 0:
Т заданная подачи понижается, если Т возвр. оказывается ниже предела.

Пример

Огранич. активно ниже $50^{\circ} \mathrm{C}$.
Влияние устанавливается на -3.0.
Фактическая Т обратки на 2 градуса ниже установленной.
Результат:
Заданная Т подачи изменяется на $-3.0 \times 2=-6.0$

Обычно данный параметр равен 0 в системах централизованного теплоснабжения, так как высокая Т возвращаемого теплоносителя приемлема.
Обычно данный параметр выше 0 в системах с котлом, что позволяет избежать слишком низкой Т обратки (см. также "Влиян. - макс.").

Время оптимиз. (время адаптации)		12037
Контур	Диапазон установки	Заводская
$\mathbf{2}$	OFF / 1 ... 50 c	$\mathbf{2 5} \mathbf{c}$

Регулирует скорость адаптации Т обратного теплоностителя к заданному температурному пределу (регулятор I).

OFF: Параметр "Время оптимиз." никак не влияет на работу регулятора.
1: \quad Требуемая температура адаптируется быстро.
50: Требуемая температура адаптируется медленно.

Приор. (приоритет ограничения Т возвр. теплоносителя)		12085
Контур	Диапазон	Заводская
2	ВЫК / ВКЛ	ВЫКл

Выберите, должно ли ограничение Т в обратном трубопроводе заменять ограничение подачи "Т мин."

ВЫКЛ: Мин. ограничение Т подачи не отменяется
ВКЛ: Мин. ограничение Т подачи отменяется.

6.5 Оптимизация

Авто сохр. (поддерж. температуры в зависимости от 12011 темп. наруж. воздуха)		
Контур	Диапазон установки	Заводская
2	ВЫК / -29 ... $10{ }^{\circ} \mathrm{C}$	$-15{ }^{\circ} \mathrm{C}$

При температуре наружного воздуха ниже установленного значения, установка температуры поддержания температуры не имеет значения. При температуре наружного воздуха выше установленного значения, температура поддерживается относительно температуры наружного воздуха. Данная функция используется в системах централизованного теплоснабжения во избежание больших перепадов температуры после периода энергосбережения.

BЫК: Температура в режиме экономии не зависит от температуры наружного воздуха.
-29 ... 10: Температура в режиме экономии зависит от температуры наружного воздуха. При температуре наружного воздуха выше $10^{\circ} \mathrm{C}$ понижение составит 100%. Чем ниже температура наружного воздуха, тем меньше понижение температуры. Если температура наружного воздуха ниже установленной границы, то понижение температуры отсутствует.

Температуры комфорта и экономии указаны в примерах. Разница между температурой комфорта и экономии считается равной 100%. В зависимости от температуры наружного воздуха, процентное значение может быть меньше в соответствии со значением параметра «Auto saving».

Пример:

Тнар.: $-5^{\circ} \mathrm{C}$
Требуемая Т комн. в режиме КОМФОРТ: $22^{\circ} \mathrm{C}$
Требуемая Т комн. в режиме ЭКОНОМ: $16{ }^{\circ} \mathrm{C}$
Значение «Авто сохр.»: $-15^{\circ} \mathrm{C}$

На рисунке выше показано, что процент понижения при температуре наружного воздуха $-5^{\circ} \mathrm{C}$ равен 40%.

Разница между температурами комфорта и экономии равна (22-16) $=6$ градусов.
40% от 6 градусов $=2.4$ градуса
Температура режима экономии корректируется до (22-2.4) = $19.6^{\circ} \mathrm{C}$.

Натоп		12012
Контур	Диапазон установки	Заводская
2	ВЫК / 1 ... 99\%	ВЫК
Сокращение периода прогрева путем увеличения температуры подачи на установленную величину в процентах.		

BЫК: Функция натопа не включена.
1-99\%: Заданная температура подачи временно повышается на установленную величину в процентах.

Для того, чтобы сократить период прогрева после периода пониженной температуры, заданная температура подачи может быть временно увеличена (макс. 1 час). При оптимизации натоп осуществляется в период оптимизации (см. «Оптимум»).

Если установлен датчик комнатной температуры или ЕСА 30 / 31, прогрев прекращается при достижении значения температуры воздуха в помещении.

Время натопа (Требуемое время натопа)		12013
Контур	Диапазон установки	Заводская
$\mathbf{2}$	ВЫК / 1 ... 99 мин	ВЫК

Время (в минутах), в течение которого заданная температура подачи медленно возрастает, что позволяет избежать резких пиков в подаче тепла.

BЫК: Функция увеличения не включена.
1-99 Заданная температура подачи постепенно мин: повышается в течение установленного времени.

Для предотвращения пиков нагрузки в сети питания задание температуры подачи может быть отрегулировано так, чтобы происходило ее постепенное увеличение после периода экономии. Это приводит к постепенному открытию клапана.

Оптимизация (постоянная времени оптимизации) 12014		
Контур	Диапазон установки	Заводская
2	ВЫК / 10 ... 59	ВЫК
Оптимизирует время запуска и останова комфортного режима для обеспечения наилучших условий при наименьшем энергопотреблении. Чем меньше температура наружного воздуха, тем раньше происходит включение режима комфортной температуры. Режим оптимизации выключения отопления может быть либо автоматическим, либо отключен. Расчетное время включения и выключения основывается на значении постоянной времени оптимизации.		

Настройте постоянную времени оптимизации
Значение состоит из двух цифровых разрядов. Эти цифры имеют следующие значения (цифра $1=$ Таблица I, цифра 2 = Таблица II).

BЫK: Оптимизации нет. Запуск и останов отопления в момент времени, определяемый отопительным графиком.
10 ... 59: См. таблицы I и II.

Таблица I:

Левая цифра	Аккумуляция тепла в здании	Тип системы
$1-$	малая	Радиаторная система
$2-$	больдняя	
$3-$	средняя	Системы напольного отопления
$4-$	большая	
$5-$		

Таблица II:

Правая цифра	Измерение температуры	Емкость
-0	$-50^{\circ} \mathrm{C}$	большая
-1	$-45^{\circ} \mathrm{C}$	\cdot
\cdot	\cdot	\cdot
-5	$-25^{\circ} \mathrm{C}$	нормальная
\cdot	\cdot	\cdot
-9	$-5^{\circ} \mathrm{C}$	малая

Измерение температуры:

Наименьшая температура наружного воздуха (обычно определяется проектировщиком вашей системы с учетом конструкции системы отопления), при которой системой отопления может быть достигнута заданная температура.

Пример

Тип системы - радиаторная, аккумуляция тепла в здании - средняя.
Левая цифра равна 2.
Проектная температура равна $-25^{\circ} \mathrm{C}$, а емкость нормальная. Правая цифра равна 5.

Результат:
Параметр необходимо изменить на 25.

Оптим. Откл. (оптимизированное время отключения)				$\mathbf{1 2 0 2 6}$
Контур	Диапазон установки	Заводская		
$\mathbf{2}$	ВЫК / вКл	ВКл		
Выключить оптимизированное время отключения.				

BЫIK: Оптимизированное время отключения не используется.
ВКЛ: Оптимизированное время отключения используется.

На основании (оптимизация, основанная на Т комн. или Т наружного воздуха)			
Контур	Диапазон установки	Заводская	
2	НАР./КОМН.	НАР.	

Расчет оптимизированного времени включения и отключения может основываться на комнатной температуре или температуре наружного воздуха.

HAP: Оптимизация на основе температуры наружного воздуха. Используется, если комнатная температура не измеряется.
KOMH.: Оптимизация на основе комнатной температуры (если она измеряется).

Полный останов	12021	
Контур	Диапазон установки	Заводская
2	ВЫК / ВКл	ВЫК

Следует выбрать, хотите ли вы производить полное отключение в период экономии тепла.

BЫК: Полного отключения нет. Заданная температура подачи уменьшается по следующим параметрам: - требуемая комнатная температура в режиме экономии
-автоэкономия
ВКЛ: Заданная температура подачи уменьшается до значения параметра «Защита». Циркуляционный насос отключается, но система защиты от замораживания продолжает работать (см. «Т защ. Р»).
 оптимизации

Инструкция

Стоп отопл. (граница выключения отопления)		12179
Контур	Диапазон установки	Заводская
$\mathbf{2}$	вык / 1 ... $\mathbf{5 0}^{\circ} \mathbf{C}$	$\mathbf{2 0}^{\circ} \mathrm{C}$

Отопление отключается, когда температура наружного воздуха поднимается выше установленного значения. Клапан закроется, и через некоторое время выключится циркуляционный насос. Действие параметра «Т мин.» будет отменено.

Система отопления вновь активизируется при достижении установленной разницы между наружной и аккумулированной температурами.

Данная функция позволяет экономить энергопотребление.
Установите значение температуры наружного воздуха, при которой вы хотите отключить систему отопления.

©

Выключение отопления происходит если регулятор работает в автоматическом режиме. Когда параметр выключения имеет значение ВЫК, отключения отопления не происходит.

6.6 Параметры управления

Защита привода (защита привода)		12174
Контур	Диапазон настроек	Заводские
$\mathbf{2}$	ВЫК / 10 ... 59 мин	ВЫК

Защищает регулятор от нестабильной температуры (и, соответственно, колебаний привода). Это может произойти при очень низкой нагрузке. Защита привода увеличивает срок службы всех компонентов.

BЫК: Защита привода не активирована.

10 ... 59: Защита привода включается после установленного периода задержки в минутах.

Зона пропорц. (зона пропорциональности)		
Контур	Диапазон установки	Заводская
$\mathbf{2}$	$\mathbf{5} \ldots \mathbf{2 5 0} \mathbf{~ K}$	$\mathbf{8 0} \mathbf{K}$

Установите зону пропорциональности. Более высокое значение приведет к устойчивому, но медленному регулированию температуры подачи.

Время интегрир. (постоянная времени интегрирования)		12185
Контур	Диапазон установки	Заводская
2	$\mathbf{1} \ldots 999 \mathbf{c}$	$\mathbf{3 0} \mathbf{c}$

Установите большую постоянную интегрирования для получения медленной, но устойчивой реакции на отклонения.

Малая постоянная времени интегрирования (в секундах) вызовет быструю реакцию регулятора, но с меньшей устойчивостью.

Время работы (время перемещения штока регулирующего клапана с электроприводом)		
Контур	Диапазон установки	Заводская
2	$\mathbf{5} \ldots \mathbf{2 5 0} \mathbf{c}$	$\mathbf{5 0} \mathbf{~ c}$

Параметр "Время работы" - это время в секундах, которое требуется регулирующему клапану на перемещение от закрытого к полностью открытому положению. Установите значение "Время работы" на основе эталонного времени, или замерьте продолжительность работы при помощи секундомера.

Расчет времени перемещения регулирующего клапана с электроприводом
Продолжительность работы регулирующего клапана с электроприводом рассчитывается с использованием следующих методов:

Седельные клапаны

Продолжительность работы = ход штока клапана (мм) х скорость привода (с/мм)

Пример:
$5.0 \mathrm{MM} \times 15 \mathrm{C} / \mathrm{MM}=75 \mathrm{C}$

Поворотные клапаны

Продолжительность работы $=$ угол поворота x скорость привода Пример: 90 град. х 2 с/град. $=180$ с

$$
90 \text { град. } \times 2 \text { с/град. }=180 \text { с }
$$

Инструкция

$\mathbf{N z}$ (нейтральная зона)		
Контур	Диапазон	Заводская
$\mathbf{2}$	$\mathbf{1} \ldots 9 \mathbf{~ K}$	$\mathbf{3 ~ K}$

Установите подходящее значение отклонения температуры подачи.

Если возможно изменение температуры подаваемого теплоносителя в широком диапазоне, то установите нейтральную зону на высокое значение. Если фактическая температура подачи лежит в нейтральной зоне, то регулятор не приведет в действие регулирующий клапан с электроприводом.

Мин. импульс (мин. время активации, редукторный электропривод)			
Контур	Диапазон настроек	Заводские	
$\mathbf{2}$	$\mathbf{2} \ldots \mathbf{5 0}$	$\mathbf{1 0}$	

Мин. время импульса в 20 мс (миллисекунд) для активации редукторного электропривода.

Пример настройки	3начение $\mathbf{x} \mathbf{2 0} \mathbf{~ м с}$
2	40 mc
10	200 mc
50	1000 mc

©
 Данный параметр должен иметь по возможности большее значение для увеличения срока службы привода (редукторного электропривода).

Для более точной настройки PI-регулирования вы можете воспользоваться следующим методом:

- Установите параметр "Tn" (постоянная времени интегрирования) на его максимальное значение (999 с).
- Снизьте значение зоны пропорциональности "Хр" до момента начала колебаний системы (нестабильность) с постоянной амплитудой (это может стать необходимым для воздействия на систему установкой крайне малого значения).
- Найдите критический период времени по записи температуры или воспользуйтесь секундомером.

Этот критический период времени окажется характерным для системы, и вы можете оценить настройки контроллера по этому критическому периоду.
"Ти" $=0.85 \times$ критический период
"Хр" = 2.2 х значение зоны пропорциональности в критический период.
Если регулирование оказывается слишком медленным, то вы можете уменьшить значение зоны пропорциональности на 10\%. Убедитесь, что после установки параметров в системе имеется расход теплоносителя.

6.7 Описание и область применения

ЕСА адрес (выбор устройства удаленного управления)				$\mathbf{1 2 0 1 0}$
Контур	Диапазон установки	Заводская		
$\mathbf{2}$	ВЫК / А / В			ВЫК
Определяет связь с устройством удаленного управления.				

Устройство удаленного управления должно быть настроено соответственно (А или В).
A: Устройство удаленного управления ECA 30 / 31 с адресом А.
B: Устройство удаленного управления ECA 30 / 31 с адресом B .

Клапан / Насос (предохранительный клапан / насос)		12051
Контур	Диапазон настроек	Заводские
2	ВЫК / ВКЛ	ВКЛ
Выберите пр нагрева ГВС.	й клапан или насос дл	ирования

BЫK: Предохранительный клапан
ВКЛ: Насос

При выборе насоса насос P1 включается при теплоснабжении и выключается при необходимости в нагреве ГВС.

Бак, под. / обр.		12053
Контур	Диапазон настроек	Заводские
2	выК / вкл	вык

Выберите, будет ли зависеть нагрев бака ГВС от температуры подачи на S3.

ВЫК: Бак ГВС нагревается с помощью температуры S3.
ВКЛ: Бак ГВС нагревается отдельно. Температура S3 не влияет на нагрев ГВС.

$\mathbf{P е ж и м ~ Р ~ ц и р к . ~}$		12055
Контур	Диапазон настроек	Заводские
$\mathbf{2}$	ВЫК / вКл	ВЫК

Выберите необходимость включения циркуляционного насоса ГВС во время нагрева ГВС.

BЫК: Циркуляционный насос ГВС выключен во время нагрева ГВС.
ВКЛ: Циркуляционный насос ГВС не выключен во время нагрева ГВС.

Инструкция

Пробег Р ГВС				$\mathbf{1 2 0 4 1}$
Контур	Диапазон настроек	Заводские		
$\mathbf{2}$	$\mathbf{0} \ldots \mathbf{3 0}$ мин	$\mathbf{0}$ мин		
Установите время пробега (в минутах) насоса ГВС (Р3). После завершения нагрева ГВС, насос ГВС может оставаться включенным для утилизации тепла, оставшегося в теплообменнике / котле.				

0 ... 30: Установите время пробега в минутах.

Передать т треб.				$\mathbf{1 2 5 0 0}$
Контур	Диапазон настроек	Заводские		
$\mathbf{2}$	ВЫК / ВКл	ВКЛ		
Если регулятор является ведомым в системе ведущих / ведомых регуляторов, информация о требуемой температуре подачи посылается в ведущий регулятор по коммуникационной шине $E C L$ 485.				

ВЫК: Информация о требуемой температуре подачи не
посылается в ведущий регулятор.
ВКЛ: Информация о требуемой температуре подачи посылается в ведущий регулятор.

Тренир. P (тренир. насоса)		12022
Контур	Диапазон установки	Заводская
2	OFF / ON	ON
ковремен ировки пр	насоса, позволяющее теплоснабжения.	ать его

OFF: Профилактич. вкл. насоса не производится.
ON: Насос включается на 1 минуту 1 раз в 3 дня в полдень (12:14 часов).

М тренирю (тренир. клапана)		12023
Контур	Диапазон	Заводская
2	ВЫКЛ/ВКЛ	ВЫкл
ВКЛ тренировку клапана, что позволяет избежать его блокировки при остановке теплоснабжения.		

ВЫКЛ: Профилактич. вкл. клапана не производится.
ВКЛ: Клапан открывается на 7 минут и закрывается на 7 минут 1 раз в 3 дня в полдень (12:00 часов).

Приоритет ГВС (закрытый клапан / норм. работа)		$\mathbf{1 2 0 5 2}$
Контур	Диапазон настроек	Заводские
$\mathbf{2}$	ВыК / вКл	выК

Контур отопления может быть закрыт, если регулятор является ведомым и во время регулирования температуры / подогрева ГВС ведущим регулятором.

ВЫК: Во время регулирования температуры/подогрева ГВС ведущим регулятором, температура подаваемого теплоносителя остается неизменной.
ВКЛ: Клапан в контуре отопления закрыт* в процессе подогрева / регулирования ГВС, осуществляемого по запросу ведущего регулятора.

* Требуемая температура подачи установлена в параметре "Тзащиты"

Т защ. P (Темп. защиты от замерзания)		12077
Контур	Диапазон	Заводская
2	ВЫКЛ / -10 ... $20{ }^{\circ} \mathrm{C}$	$2^{\circ} \mathrm{C}$

Когда Т наружного воздуха опускается ниже значения, установленного в параметре "Т защ. P", регулятор автоматически включает цирк. насос для защиты системы.

ВЫКЛ: Защита от замерзания ВЫКЛ.
-10 ... 20: Циркуляционный насос ВКЛ, когда Т наружного воздуха опускается ниже установленного значения.

Т вкл P (тепловая нагрузка)		12078
Контур	Диапазон	Заводская
2	$5 \ldots 40^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$
Когда заданная Т подачи превышает значение, установленное в параметре "Т вкл Р", регулятор автоматически ВКЛ циркуляционный насос.		

5 ... 40: Циркуляционный насос ВКЛ, когда Т подаваемого теплоносителя больше устан. значения.

Пробег \mathbf{P}		12040
Контур	Диапазон настроек	Заводские
2	0 ... 99 мин	3 мин
Циркуляционный насос в контуре отопления может быть включен в течение определенного времени (мин) после прекращения теплоснабжения (требуемая температура подачи опускается ниже, чем значение настройки "T под. вкл. P" (номер ID 12078)). Данная функция может использовать оставшееся тепло, например, в теплообменнике.		

0: Циркуляционный насос выключается сразу же после прекращения теплоснабжения.
1 ... 99: Циркуляционный насос включается на заданное время после отключения теплоснабжения.

Данную настройку необходимо учитывать, если данный регулятор является ведомым.

\triangle

В обычных условиях система не защищена от замерзания при значении параметра меньше $0^{\circ} \mathrm{C}$ или ВЫКЛ.
Для водяных систем рекомендуется значение параметра $2{ }^{\circ} \mathrm{C}$.
\square

Защита Требуемая Т защиты от замерзания.				12093
Контур	Диапазон	Заводская		
$\mathbf{2}$	$\mathbf{5} \ldots \mathbf{4 0}^{\circ} \mathrm{C}$	$\mathbf{1 0}^{\circ} \mathrm{C}$		

Установите требуемую T подачи для защиты системы ГВС от замерзания.

5 ... 40: Требуемая Т защиты от замерзания.

Внешний вход (внешний переключатель), ECL 210				$\mathbf{1 2 1 4 1}$
Контур	Диапазон настроек	Заводские		
$\mathbf{2}$	ВЫК / S1 ... S8	ВЫК		

Выберите вход для параметра "Внеш. вход" (внешний переключатель). Посредством кнопки переключателя регулятор может быть принудительно переключен в режим комфорта или экономии.

ВЫК: Для внешнего переключателя не выбран ни один вход.
S1 ... S8: Вход, выбранный для внешнего переключателя.

Если один из входов S1...S6 выбран в качестве входа для внешнего переключателя, соответствующий переключатель должен иметь позолоченные контакты.
Если один из входов S7 или S8 выбран в качестве входа для переключателя, соответствующий переключатель может иметь стандартные контакты.

Пример подключения переключателя ко входу $\mathrm{S8}$ см. на рисунке.

Для подключения внешнего переключателя выбирайте только неиспользованные входы. Если для подключения внешнего переключателя будет назначен уже используемый вход, работа данного входа будет также прервана.

См. также "Тип режима".

Внешний вход (внешний переключатель) - ECL 310				$\mathbf{1 2 1 4 1}$
Контур	Диапазон настроек	Заводские		
$\mathbf{2}$	ВЫК / S1 ... S10	ВЫК		

Выберите вход для параметра "Внеш. вход" (внешний переключатель). Посредством внешнего переключателя регулятор может быть принудительно переключен в режим комфорта или экономии.

BЫК: Для внешнего переключателя не выбран ни один вХод.

S1 ... S10: Вход, выбранный для внешнего переключателя.

Если один из входов S1... S6 выбран в качестве входа для внешнего переключателя, соответствующий переключатель должен иметь позолоченные контакты.
Если один из входов S7 ... S10 выбран в качестве входа для внешнего переключателя, соответствующий переключатель может иметь стандартные контакты.

Пример подключения внешнего переключателя ко входу S9 см. на рисунке.

На приведенных рисунках показана работа данного параметра (переключение в режим комфорта и переключение в режим экономии).

Для подключения внешнего переключателя выбирайте только неиспользованные входы. Если для подключения внешнего переключателя будет назначен уже используемый вход, работа данного входа будет также прервана.

См. также "Тип режима".

Переключение в режим экономии

Время

Результат переключения в режим экономии зависит от настройки параметра "Полный останов".
Полный останов = ВЫК: Отопление понижается
Полный останов = ВКЛ: Отопление прекращается

Тип режима (режим внешней перенастройки)				$\mathbf{1 2 1 4 2}$
Контур	Диапазон настроек	Заводские		
$\mathbf{2}$	КОМФОРТ/ЭКонОМия	КОМФОРТ		
Выберите режим внешней перенастройки.				

Принудительное переключение может быть использовано в режиме комфорта или экономии.
Для переключения регулятор должен находиться в режиме работы по программе.

ЭКОНО- При включении переключения регулятор переходит МИЯ в режим экономии.
КОМФО- При включении переключения регулятор переходит
PT: в режим комфорта.

6.8 Антибактериальная функция

В выбранные дни недели в течение заданного периода времени температуру ГВС можно повышать для нейтрализации бактерий в системе ГВС. Требуемая температура ГВС в "Т треб." (обычно $80^{\circ} \mathrm{C}$) будет устанавливаться в выбранные дни недели на заданный период времени.

Антибактериальная функция не работает в режиме защиты от замерзания.

Настройка
Анти6актерия:
День Пв (СчПв Время начала 00:00
Длительность 120 m
T тре6. $80^{\circ} \mathrm{C}$

Во время работы антибактериальной функции ограничение температуры обратного теплоносителя отключено.

День (день)			
Контур	Диапазон	Заводская	
$\mathbf{2}$	Дни недели		
Выберите (отметьте) дни недели, в которые должна включаться антибактериальная функция.			

П = Понедельник
В = Вторник
C = Среда
$Ч=$ Четверг
П = Пятница
C = Суббота
В = Воскресенье

Старт (время запуска)			
Контур	Диапазон	Заводская	
$\mathbf{2}$	$\mathbf{0 0 : 0 0} \ldots \mathbf{2 3 : 3 0}$	$\mathbf{0 0 : 0 0}$	
Установите время запуска антибактериальной функции.			

Длительность					
Контур	Диапазон	Заводская			
$\mathbf{2}$	$\mathbf{1 0} \ldots \mathbf{6 0 0} \mathbf{~ m}$	$\mathbf{1 2 0} \mathbf{~ m}$			

Установите продолжительность (в минутах) антибактериальной функции.

Т треб. (требуемая температура)			
Контур	Диапазон	Заводская	
$\mathbf{2}$	ВЫКЛ/ $\mathbf{1 0} \ldots \mathbf{1 1 0}^{\circ} \mathbf{C}$	ВЫКЛ	
Установите требуемую температуру ГВС для антибактериальной функции.			

ВЫКЛ: Антибактериальная функция выключена.
1 ... 110: Требуемая температура ГВС во время действия антибактериальной функции.

6.9 Авария

Аварийная сигнализация контроля температуры подачи доступна долько в контуре 2 в приложениях A275.3 и A375.3.

Во многих приложениях серии ECL Comfort 210 и ECL Comfort 310 имеется аварийная функция. Аварийная функция обычно активирует реле 4 (ECL Comfort 210) или реле 6 (ECL Comfort 310).

Аварийное реле может включать аварийную лампу, звуковой сигнал, подавать сигнал на устройство оповещения об аварийной ситуации и т.п.

Данное реле замкнуто все время, пока включено аварийное состояние.

Стандартные аварийные ситуации:

- Фактическая температура подачи отличается от требуемой температуры подачи.

6.9.1 Темп. монитор

Макс. разница		12147
Контур	Диапазон настроек	Заводские
$\mathbf{2}$	ВыК / 1 ... 30 K	Вык

Сигнал оповещения включается, если действующая температура подачи повышается на величину, большую установленной разницы (приемлемое отклонение температуры от требуемой температуры подачи). См. также "Задержка".

ВЫК: Аварийная функция не включена.
$\mathbf{1 . . .} \mathbf{3 0}$ K: Аварийная функция активируется, когда действительная температура превышает приемлемое отклонение.

Мин. разница		12148
Контур	Диапазон настроек	Заводские
$\mathbf{2}$	ВЫК / 1 ... 30 K	ВЫК

Сигнализация включается, если действующая температура подачи понижается на величину, меньшую установленной разницы (приемлемое отклонение температуры от требуемой температуры подачи). См. также "Задержка".

ВЫК: Аварийная функция не включена.
$\mathbf{1 . . .} \mathbf{3 0}$ K: Аварийная функция активируется, когда текущая температура понижается ниже приемлемого отклонения.

Темп. подачи ${ }^{\circ} \mathrm{C}$

Temn. подачи ${ }^{\circ} \mathrm{C}$

Миним. т		12150	
Контур	Диапазон	Заводская	
$\mathbf{2}$	$\mathbf{1 0 \ldots 5 0}{ }^{\circ} \mathbf{C}$	$\mathbf{3 0}{ }^{\circ} \mathbf{C}$	

Аварийная функция не активируется, если Т треб. под. ниже установленного значения.

7.0 Настройки, контур 3

7.1 Температура в баке-аккумуляторе

Разница загр.		13193
Контур	Диапазон настроек	Заводские
$\mathbf{3}$	$\mathbf{1} \ldots \mathbf{5 0} \mathbf{~ K}$	$\mathbf{1 5} \mathbf{~ K}$
Значение в градусах выше требуемой температуры ГВС, которое обеспечивает требуемую температуру котла для нагрева ГВС.		

1... 50: Значение в градусах, которое необходимо добавить к требуемой температуре ГВС для получения требуемой температуры котла для нагрева ГВС.

Sl

Требуемая температура ГВС взаимосвязана с датчиком температуры в баке.

Пример:

Требуемая температура
「BC:
Разница старт: -3 K
Результат:
Нагрев ГВС начинается при снижении температуры, измеренной датчиком температуры в баке, ниже $52{ }^{\circ} \mathrm{C}$.

\mathbf{P} азница стоп		$\mathbf{1 3 1 9 4}$
Контур	Диапазон настроек	Заводские
$\mathbf{3}$	$\mathbf{- 5 0} \ldots \mathbf{5 0} \mathbf{K}$	$\mathbf{3 K}$

Значение в градусах выше или ниже требуемой температуры ГВС, при котором нагрев ГВС прекратится.
-50 ... 50: Установите значение в градусах.

Пример с положительным значением "Разницы стоп":

Пример с отрицательным значением "Разницы стоп":

7.2 Описание и область применения

Клапан / Насос (предохранительный клапан / насос)				$\mathbf{1 3 0 5 1}$
Контур	Диапазон настроек	Заводские		
$\mathbf{3}$	ВЫК / ВКл	ВКл		
Выберите предохранительный клапан или насос для регулирования нагрева ГВС.				

ВЫК: Предохранительный клапан
ВКЛ: Насос

При выборе насоса насос P1 включается при теплоснабжении и выключается при необходимости в нагреве ГВС.

Бак, под. / обр.				13053
Контур	Диапазон настроек	Заводские		
$\mathbf{3}$	ВЫК / ВКл	ВЫК		
Выберите, будет ли зависеть нагрев бака ГВС от температуры подачи на S3.				

BЫК: Бак ГВС нагревается с помощью температуры S3.
ВКЛ: Бак ГВС нагревается отдельно. Температура S3 не влияет на нагрев ГВС.

Пробег Р ГВС		$\mathbf{1 3 0 4 1}$
Контур	Диапазон настроек	Заводские
$\mathbf{3}$	$\mathbf{0} \ldots \mathbf{3 0}$ мин	$\mathbf{0}$ мин
Установите время пробега (в минутах) насоса ГВС (Р3). После завершения нагрева ГВС, насос ГВС может оставаться включенным для утилизации тепла, оставшегося в теплообменнике / котле.		

0 ... 30: Установите время пробега в минутах.

Передать Т треб.		13500
Контур	Диапазон настроек	Заводские
$\mathbf{3}$	ВЫК / вКл	ВКл
Если регулятор является ведомым в системе ведущих / ведомых регуляторов, информация о требуемой температуре подачи посылается в ведущий регулятор по коммуникационной шине ЕCL 485.		

BЫК: Информация о требуемой температуре подачи не посылается в ведущий регулятор.
ВКЛ: Информация о требуемой температуре подачи посылается в ведущий регулятор.

Инструкция

Контур	Диапазон настроек	Заводские
3	$5 \ldots 4{ }^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$

Установите требуемую температуру подачи для защиты системы ГВС от замерзания.

5 ... 40: Требуемая температура защиты от замерзания.

Внешний вход (внешний переключатель), ECL 210		$\mathbf{1 3 1 4 1}$
Контур	Диапазон настроек	Заводские
$\mathbf{3}$	ВЫК / S1 ... S8	ВЫК

Выберите вход для параметра "Внеш. вход" (внешний переключатель). Посредством кнопки переключателя регулятор может быть принудительно переключен в режим комфорта или экономии.

ВЫК: Для внешнего переключателя не выбран ни один вход.
S1 ... S8: Вход, выбранный для внешнего переключателя.

Если один из входов S1...S6 выбран в качестве входа для внешнего переключателя, соответствующий переключатель должен иметь позолоченные контакты.
Если один из входов S 7 или $\mathrm{S8}$ выбран в качестве входа для переключателя, соответствующий переключатель может иметь стандартные контакты.

Пример подключения переключателя ко входу S8 см. на рисунке.

Для подключения внешнего переключателя выбирайте только неиспользованные входы. Если для подключения внешнего переключателя будет назначен уже используемый вход, работа данного входа будет также прервана.

См. также "Тип режима".

Внешний вход (внешний переключатель) - ECL 310				13141
Контур	Диапазон настроек	Заводские		
$\mathbf{3}$	ВЫК / S1 ... S10	ВЫК		

Выберите вход для параметра "Внеш. вход" (внешний переключатель). Посредством внешнего переключателя регулятор может быть принудительно переключен в режим комфорта или экономии.

BЫК: Для внешнего переключателя не выбран ни один вход.

S1 ... S10: Вход, выбранный для внешнего переключателя.

Если один из входов S1... S6 выбран в качестве входа для внешнего переключателя, соответствующий переключатель должен иметь позолоченные контакты.
Если один из входов S7 ... S10 выбран в качестве входа для внешнего переключателя, соответствующий переключатель может иметь стандартные контакты.

Пример подключения внешнего переключателя ко входу S9 см. на рисунке.

На приведенных рисунках показана работа данного параметра (переключение в режим комфорта и переключение в режим экономии).

Тип режима (режим внешней перенастройки)				13142
Контур	Диапазон настроек	Заводские		
$\mathbf{3}$	КОМФОРТ/ЭКОНОМия	КОМФОРТ		
Выберите режим внешней перенастройки.				

Принудительное переключение может быть использовано в режиме комфорта или экономии.
Для переключения регулятор должен находиться в режиме работы по программе.

ЭКОНОМ- При включении переключения регулятор переходит ИЯ: в режим экономии.
КОМФО- При включении переключения регулятор переходит PT: в режим комфорта.
\square

Для подключения внешнего переключателя выбирайте только неиспользованные входы. Если для подключения внешнего переключателя будет назначен уже используемый вход, работа данного входа будет также прервана.

См. также "Тип режима".

7.3 Антибактериальная функция

В выбранные дни недели в течение заданного периода времени температуру ГВС можно повышать для нейтрализации бактерий в системе ГВС. Требуемая температура ГВС в "Т треб." (обычно $80^{\circ} \mathrm{C}$) будет устанавливаться в выбранные дни недели на заданный период времени.

Антибактериальная функция не работает в режиме защиты от замерзания.

Настройка
Антибактерия:

День П В С $С$ П \subset в	
Время начала	$00: 00$
Длительность	120 m
Т тре 6.	$80^{\circ} \mathrm{C}$

Во время работы антибактериальной функции ограничение температуры обратного теплоносителя отключено.

День			
Контур	Диапазон настроек	Заводские	
$\mathbf{3}$	Дни недели		
Выберите (отметьте) дни недели, в которые должна включаться антибактериальная функция.			

П = Понедельник
В = Вторник
С = Среда
Ч = Четверг
П = Пятница
C = Суббота
В = Воскресенье

Продолжительность			
Контур	Диапазон настроек	Заводские	
$\mathbf{3}$	$\mathbf{1 0} \ldots \mathbf{6 0 0}$ мин	$\mathbf{1 2 0}$ мин	
Установите продолжительность (в минутах) антибактериальной функции.			

Т треб.			
Контур	Диапазон настроек	Заводские	
$\mathbf{3}$	ВЫК / 10 ... $\mathbf{1 1 0}^{\text {º }}$	ВыК	

Установите требуемую температуру ГВС для антибактериальной функции.

BЫК: Антибактериальная функция выключена.
10 ... 110: Требуемая температура ГВС в период действия антибактериальной функции.

8.0 Общие настройки регулятора

8.1 Описание «Общих настроек регулятора»

Некоторые основные настройки, применимые ко всему регулятору, находятся в отдельной части регулятора.

Переход к «Общим настройкам регулятора»:

Действие: Цель:
Примеры:
Выберите «МЕНЮ» в любом контуре
Подтвердите
Выберите переключатель контуров в правом верхнем углу дисплея.

Подтвердите
Выберите «Общие настройки регулятора»

Подтвердите

Выбор контура
Основная
뭉
MEND:
Время: \& дата
Праздники
О6зop еходов
ApXVE
Выбор евхода

8.2 Время и дата

Устанавливать правильную дату и время нужно только при первом включении регулятора ECL Comfort или после отсутствия питания длительностью более 72 часов.

У регулятора имеется 24 -часовой хронометр.

Авт. летн. время (переход на летнее время)

ДА: Встроенные часы регулятора автоматически изменяют время на +/- один час в определенные дни перехода на летнее или зимнее время по стандартам Центральной Европы.

HET: Вы выполняете вручную переход между летним и зимним временем путем перевода часов на один час вперед или назад.

MEN: M
묘

30.06 .2010

Петнее ереня

```
AB
```


50

Ведомые регуляторы в системе с управляемыми устройствами (через коммуникационную шину ECL 485) получают значения времени и даты от ведущего регулятора.

8.3 Праздничный день

В данном разделе дано общее описание функции для ECL
Comfort серии 210 / 310. Представленные данные являются типичными и не зависят от варианта применения. Они могут отличаться от данных в вашем случае.

Имеются программы отопления в праздничные дни для каждого контура в отдельности и для общего регулятора．

Каждая программа праздничных дней содержит одну или несколько программ．В каждой программе можно указать начальную и конечную даты．Период начинается в 00：00 начальной даты и заканчивается в 00：00 конечной даты．

Установленные режимы：комфорт，экономия，защита от заморозки или комфорт 7－23（до 7 и после 23 часов，режим действует по программе）．

Как установить программу праздничных дней：
Действие：Цель：

$\checkmark{ }^{\star}$	Выберите＂МЕНЮ＂	MENU
Q_{i}	Подтвердите	
\bigcirc^{2}	Выберите переключатель контуров в правом верхнем углу экрана．	
M_{i}	Подтвердите	
\checkmark	Выберите контур или＂Общие настройки регулятора＂	
	Отопление	IIII
	ГВС	H
	Общие настройки регулятора	$\square \mathrm{O}$
RHi	Подтвердите	
\checkmark	Выберите＂Праздники＂	
Qin	Подтвердите	
\checkmark	Выберите программу	
©R	Подтвердите	
(R)	Подтвердите выбор переключателя режимов	
\bigcirc	Выберите режим	
	－Комфорт	米
	－Комфорт 7－23	$\frac{4}{7-23}$
	Эконом	D
	－Защита от замерзания	－＊
（An）	Подтвердите	
\checkmark	Введите сначала время начала，а затем время окончания	
M_{n}	Подтвердите	
\bigcirc	Выберите＂Меню＂	
Sin	Подтвердите	
Sin	В меню＂Сохранение＂выберите ＂Да＂или＂Нет＂．При необходимости выберите следующую программу	

Программа праздничных дней，заданная в меню＂Общие настройки регулятора＂，действует для всех контуров．Также программа праздничных дней может быть установлена отдельно для каждого отопительного и ГВС－контуров．

Конечная дата должна отстоять от начальной хотя бы на один день．

$\begin{aligned} & \text { Основная } \\ & \text { MENU; } \end{aligned}$	［10
Время \＆дата Праздники О6зор еходов Apxue Выбор еыхода	
MENU Праздники：	ㅁ⿴囗才
Программа 1 Программа 2 Программа 3 Программа 4	
Праздники Программа 1：	ㅁ⿴囗才
Тип Начало $24.12 .2010$ Конец $2.01 .2011$	$1{ }^{2+23}$

Праздники ⿴囗
Программа 1：

Тип	
Нач Сохранить	
－Дa	Het
KoHer 2.01	

ECA 30 / 31 не может отменять график праздников регулятора.
Однако, в режиме работы регулятора по графику можно воспользоваться следующими опциями ЕСА 30 / 31:

Выходной
Праздник
Отдых (расширенный комфортный период)
Пониженная мощность (расширенный экономный период)

8.4 Обзор входа

В данном разделе дано общее описание функции для ECL Comfort серии 210 / 310. Представленные данные являются типичными и не зависят от варианта применения. Они могут отличаться от данных в вашем случае.

Обзор входа расположен в общих параметрах регулятора.
В этом обзоре отображается текущая температура в системе (только для чтения).

MENL	四
O6eop exogoe:	
T Hap.	-0.5*
T комн.	$24.5{ }^{\circ} \mathrm{C}$
Т под, отопл.	$49.6{ }^{\circ} \mathrm{C}$
Т под, ГВС	$50.3{ }^{\circ} \mathrm{C}$
T обратн.	$24.6{ }^{\circ} \mathrm{C}$

8.5 Журнал

В данном разделе дано общее описание функции для ECL
Comfort серии 210 / 310. Представленные данные являются типичными и не зависят от варианта применения. Они могут отличаться от данных в вашем случае.

Функция журнала（история температур）позволяет отслеживать изменения температур за сегодня，вчера，последние 2 дня，или же последние 4 дня в подсоединенных датчиках．

Для определенного датчика есть свой журнал，в котором отображаются значения температуры．

Функция журнала доступна в общих настройках регулятора．

Пример 1：

1－дневный журнал за вчера，показывающий изменения температуры наружного воздуха за последние 24 часа．

Пример 2：

Сегодняшний журнал с реальными температурами подаваемого теплоносителя вместе с требуемыми значениями．

Пример 3：

Вчерашний журнал с температурами ГВС вместе с требуемыми значениями．

MENTI

묭
APXME：
－T нар．
Tкомн，\＆Tpe6．
Тпод，\＆Треб．
ГВС под，\＆Треб
Тобр，\＆Огранич．

APXAE（D⿴囗

T Hap．；

－Архие сегодня
Архие ечера
Aрхие за 2 дня
Архие за 4 дня

1 T Hap，■回

APXUE E4ep：

8.6 Управление выходом

В данном разделе дано общее описание функции для ECL Comfort серии 210 / 310. Представленные данные являются типичными и не зависят от варианта применения. Они могут отличаться от данных в вашем случае.

Выбор выхода используется для отключения одного или нескольких управляемых элементов. Это может также понадобиться в случае обслуживания.

Действие:Цель: Выберите "МЕНю" на любом экране обзора	Примеры:	Управляемые элементы
Подтвердите		
Выберите переключатель контуров		

Не забудьте изменить состояние обратно, после того как исчезнет необходимость в переключении.

8.7 Функции ключа

Новое приложение Удалить приложение
Удаляет существующее приложение. Другое приложение можно выбрать, вставив ключ программирования ECL.

Приложение	Дает обзор приложения и его
	подтипов на соответствующем ключе
	$E C L$.

Установка Установки системы
В системные установки входят такие как: настройка связи, яркость дисплея и т.п.

Пользовательские установки

В пользовательские установки входят следующие: требуемая комнатная температура, требуемая температура ГВС, расписание, график отопления, ограничения и т.п.

Переход к заводским

Восстанавливает заводские установки.

Копировать B:
Путь копирования
Установки системы

Пользовательские установки

Начать копирование

Основная 밍 MENU:

Apxue
Выбор выхода

- Функции ключа

Система

Дополнительную информацию о том, как использовать индивидуальные «Функции ключа», можно также найти в разделе «Вставка ключа программирования ECL»

8.8 Система

8.8.1 Версия ECL

В разделе "Версия ECL" вы сможете найти всю информацию, касающуюся вашего электронного регулятора.

Приготовьте эту информацию перед обращением в "Данфосс" по вопросам о вашем регуляторе.

Информацию о вашем ключе программирования ECL можно найти в разделах "Функции ключа" и "Описание ключа".

Кодовый номер:	Номер заказа и продажи регулятора Оборудование:
Аппаратная версия регулятора	
Программное обеспечение:	Версия программного
обеспечения регулятора	
Заводской номер:	Уникальный номер регулятора
Неделя выпуска:	Номер недели и год (НН.ГГгГ)

8.8.2 Расширение

Только ECL Comfort 310:
В параметре "Расширение" дана информация о дополнительных модулях, если такие существуют. Например, модуль ECA 32.

8.8.3 Ethernet

У ECL Comfort 310 есть интерфейс связи Modbus/TCP, позволяющий подключить регулятор ECL к сети Ethernet. Это обеспечивает удаленный доступ к регулятору ECL 310 на основе стандартных инфраструктур связи.

В параметре "Ethernet" можно настроить необходимые IP-адреса.

8.8.4 Конфигурация портала

У ECL Comfort 310 есть интерфейс связи Modbus/TCP, позволяющий подключить регулятор ECL к Интернету.

Параметры Интернета даны ниже.

Пример, версия ECL

Система	ㅁ⿴囗
Версия ECL:	
Кодовый	87 H 3040
Оборудование	A
Программа	1.10
Nсборки	2847
Серийный N	123456789

8.8.5 Конфигурация M-bus

ECL Comfort 310 имеет интерфейс связи M-bus, позволяющий подсоединять тепловычислители в качестве ведомых устройств.

Параметры M-bus даны ниже.

8.8.6 Тепловычислитель

ECL Comfort 310 обеспечивает связь с 5 тепловычислителями через M-bus. Данные тепловычислителей можно прочитать с приборов, подключенных через M-bus.

8.8.7 Обзор прозрачного входа

Отображаются измеряемые температуры, состояние выхода и напряжения.

Кроме того, можно выбрать обнаружение сбоев для активированных входов температур.

Контроль датчиков:
Выберите датчик, измеряющий температуру, например S5. После нажатия диска Q в выбранной строке появляется лупа. Теперь температура S5 находится под контролем.

Индикация аварийного сигнала:
В случае отсоединения или короткого замыкания соединения датчика температуры или сбоя самого датчика, активируется функция тревоги.

В меню "Описание прозрачного входа" символ сигнала тревоги отображается рядом с соответствующим датчиком.

Сброс аварийного сигнала:
Выберите датчик (S номер), аварийный сигнал которого вы хотите сбросить. Нажмите диск. Лупа 9 и символы сигнала тревоги исчезнут.

При повторном нажатии диска функция контроля восстанавливается.

8.8.8 Дисплей

Яркость		60058
Контур	Диапазон	Заводская
$\square \square$	0 ... 10	5
астройте яркость дисплея.		

[^8]| $\mathbf{~ К о н т р а с т ~ (к о н т р а с т н о с т ь ~ д и с п л е я) ~}$ | | | |
| ---: | ---: | ---: | ---: |
| Контур | | Диапазон | Заводская |
| $\square \square 0$ | $\mathbf{0} \ldots 10$ | $\mathbf{3}$ | |
| Настройте контрастность дисплея. | | | |

0: Малая контрастность.
10: Большая контрастность.

8.8.9 Коммуникация

Modbus адрес.		38
Контур	Диапазон	Заводская
$\square 0$	1 ... 247	1
Если регулятор входит в сеть Modbus, установите здесь адрес Modbus.		

1 ... 247: Назначьте адрес Modbus из указанного диапазона установки.

ECL 485 адрес. (адрес управляемого устройства)		$\mathbf{2 0 4 8}$
Контур	Диапазон установки	Заводская установка
$\square 0$	$\mathbf{0} \ldots 15$	$\mathbf{1 5}$

Данный параметр актуален, если в одной и той же системе ECL Comfort работают несколько регуляторов (соединенных шиной ECL 485) и, возможно, подключены устройства удаленного управления (ECA 30 /31).

0: \quad Регулятор работает в качестве ведомого устройства. Ведомый регулятор принимает информацию о температуре наружного воздуха (S1), времени системы и требовании ГВС ведущего устройства.
1... 9: Регулятор работает в качестве ведомого устройства. Ведомый регулятор принимает информацию о температуре наружного воздуха (S1), времени системы и требовании ГВС ведущего устройства. Ведомый регулятор посылает ведущему регулятору информацию о заданной температуре подачи.
10... 14: Зарезервировано.

15: Коммуникационная шина ECL 485 работает. Регулятор является ведущим. Он посылает информацию о температуре наружного воздуха (S1) и системном времени. Подключенные устройства удаленного управления (ECA $30 / 31$) активированы.

Регуляторы ECL Comfort могут быть подключены через коммуникационную шину ECL 485 для объединения в большую систему (одновременно к шине ECL 485 может быть подключено не более 16 устройств).

Каждому ведомому регулятору может быть присвоен свой адрес (1 ... 9).

Однако, еще большее число ведомых регуляторов могут иметь адрес 0, если они должны лишь получать информацию о температуре наружного воздуха и системном времени (приёмники).

$\mathbf{C е р в и с ~ P i n ~ (с е р в и с н ы и ̆ ~ с и г н а л) ~}$				$\mathbf{2 1 5 0}$
Контур	Диапазон установки	Заводская		
$\square \square 0$	$\mathbf{0} / \mathbf{1}$	$\mathbf{0}$		
Данный параметр используется только для установки связи с шиной Моdbиs.				

0: Сервисный сигнал связи не активирован.
1: Активация сервисного сигнала связи.

Суммарная длина кабеля не должна превышать 200 м (при подключении всех устройств, включая внутреннюю коммуникационную шину ECL 485).
Использование кабелей длиной более 200 м может стать причиной чувствительности к помехам (ЭМС).

Внеш. сброс	$\mathbf{2 1 5 1}$	
Контур	Диапазон установки	Заводская
$\square \square 0$	$\mathbf{0} / \mathbf{1}$	$\mathbf{0}$
Данный параметр используется только для установки связи с шиной Модbия.		

0: Сброс не активирован.

1: Сброс.

8.8.10 Язык

Язык				Диапазон	Заводская
Контур	English / местный	English			
$\square 0$					

9.0 Дополнительно

9.1 Несколько регуляторов в одной системе

Если регуляторы ECL Comfort соединены с помощью шины связи ECL 485 (тип кабеля: 2 х витая пара), ведущий регулятор будет пересылать ведомым контроллерам следующие сигналы:

- Температура наружного воздуха (измеряемая S1)
- Время и дата
- Подогрев ГВС

Кроме того, ведущий регулятор может получать информацию о заданной температуре подачи (потребление) от ведомых регуляторов.

ВЕДОМЫЕ регуляторы: Как использовать сигнал о температуре наружного воздуха, отправленный с ВЕДУЩЕГО регулятора

Ситуация 1:
Ведомые регуляторы получают только информацию о температуре наружного воздуха и дате/времени.

ВЕДОМЫЕ регуляторы:
Измените заводскую настройку адреса с 15 на адрес 0 .

- В Повыберите Система > Коммуникация > ECL 485 адрес:

ECL 485 адрес (адрес ведущего/ведомого устройства)		
Контур	Диапазон установки	Выберите
$\square 0$	$0 . . .15$	$\mathbf{0}$

ВЕДОМЫЙ регулятор: Каким образом реагировать на теплопотребление ГВС, отправленное с ВЕДУЩЕГО регулятора

Ситуация 2:
Ведомое устройство получает информацию о подогреве ГВС в ведущем регуляторе и его можно настроить на закрытие выбранного контура обогрева.

ВЕДОМЫЙ регулятор:
Установите заданную функцию:

- В контуре $1 /$ контуре 2 выберите Настройки > Применение > ГВС приоритет:

ГВС приоритет (закрытый клапан / норм. работа)		11052 / 12052
Контур	Диапазон установки	Выберите
$1 / 2$	ВЫКЛ / ВКЛ	ВыкЛ / ВКЛ

ВЫКЛ: Во время регулирования температуры/подогрева ГВС ведущим регулятором, температура подаваемого теплоносителя остается неизменной.
ВКЛ: Клапан в контуре отопления закрыт в процессе подогрева/регулирования ГВС, осуществляемого по запросу ведущего регулятора.

아

В системе с ВЕДУЩИМ/ВЕДОМЫМ регулятором, может быть только один ВЕДУЩИЙ регулятор с адресом 15.

Если по ошибке существует более одного ВЕДУЩЕгО регулятора в системе шины связи ECL 485, надо выбрать, какой регулятор будет ВЕДУЩИМ. Измените адрес остальных регуляторов. Работа системы с более чем одним ВЕДУЩИМ регулятором будет нестабильной.

В ВЕДУЩЕМ регуляторе адрес в поле "ECL 485 адрес (адрес ведущего/ведомого устройства)", номер ID 2048 должен быть всегда 15.

ВЕДОМЫЙ регулятор: Как использовать сигнал о температуре наружного воздуха и отправлять информацию о заданной температуре подачи назад в ВЕДУЩИЙ регулятор

Ситуация 3:
Ведомый регулятор получает информацию о температуре наружного воздуха и дате/времени. Ведущий регулятор получает информацию о заданной температуре подачи от ведомых регуляторов с адресом от 1 до 9:

ВЕДОМЫЙ регулятор:

- в $\square 0$ выберите Система > Коммуникация > ECL 485 адрес
- Измените заводскую настройку адреса с 15 на адрес (от 1 до 9). Каждому ведомому регулятору должен быть присвоен свой адрес.

ECL 485 адрес (адрес ведущего/ведомого устройства)		$\mathbf{2 0 4 8}$
Контур	Диапазон установки	Выберите
$\square 0$	$0 \ldots 15$	$\mathbf{1} \ldots \mathbf{9}$

Кроме того, каждое ведомое устройство может отправлять информацию о заданной температуре подачи (потребление) в каждом контуре обратно ведущему регулятору.

ВЕДОМЫЙ регулятор:

- Выберите в соответствующем контуре Настройки > Применение > Послать заданную Т
- Выберите ВКЛ или ВЫКЛ.

Послать заданную т		11500 $/ 12500$
Контур	Диапазон установки	Выберите
$1 / 2$	ВЫКЛ / ВКл	вКл или ВЫКл

ВЫКЛ: Информация о заданной температуре подачи теплоносителя не посылается в ведущий регулятор.
ВКЛ: Информация о заданной температуре подачи теплоносителя посылается в ведущий регулятор.

ВЕДУЩИЙ регулятор:

- В контуре 1 выберите Настройки > Применение > Разница потребления
- Вместо ВЫКЛ выберите значение (например, 5К), которое будет добавляться к самому высокому значению потребления (заданная температура подачи) ведомых устройств.

Разница потребления		11017
Контур	Диапазон установки	Выберите
1	ВЫКл / 1 ... 20 K	$\mathbf{1} \ldots \mathbf{2 0 ~ K}$

- Вместо ВЬКЛ выберите значение (например 5К)

В ВЕДУЩЕМ регуляторе адрес в поле "ECL 485 адрес (адрес ведущего/ведомого устройства)", номер ID 2048 должен быть всегда 15.

9.2 Часто задаваемые вопросы

Представленные здесь термины применимы к регуляторам Comfort 210 и ECL Comfort 310. Поэтому вы можете встретить выражения, не отраженные в настоящем руководстве.

Время, показанное на дисплее, отстает на один час?
См. раздел «Время и дата».
Время, показанное на дисплее, некорректно?
Внутренние часы контроллера могли быть обнулены из-за отсутствия электропитания более 72 часов.
Для установки времени перейдите в меню «Общие настройки регулятора» (Common controller settings) и выберите «Время и дата» (Time \& Date).
Утерян ключ программирования ECL?
Чтобы увидеть тип системы отопления и версию программного обеспечения регулятора, отключите и вновь включите питание, либо перейдите в пункт меню «Общие настройки регулятора» (Common controller settings) > «Функции ключа» (Key functions) > «Приложение» (Application). На экране будет отображена информация о типе системы (например, Тип A266.1) и схема системы.
Новый ключ может быть заказан у представителя фирмы Danfoss (например, ключ программирования ECL A266). Вставьте новый ключ прораммирования ECL и, при необходимости, скопируйте личные настройки регулятора на новый ключ ECL.

Комнатная температура слишком низкая?

Убедитесь в том, что радиаторный термостат не ограничивает комнатную температуру.
Если путем изменения настроек радиаторного термостата не удается достигнуть требуемой комнатной температуры воздуха, то это означает, что температура теплоносителя слишком низкая. Увеличьте требуемую температуру воздуха в помещении (на дисплее установки комнатной температуры).
Если это не помогает, то следует изменить «график отопления» («темп. подачи»).

Комнатная температура слишком высокая в период

 пониженной температуры?Проверьте, чтобы ограничение температуры теплоносителя (параметр «Темп. мин.») не было слишком высоким.

Температура неустойчива?

Проверьте корректность установки датчика и правильность его положения. Настройте параметры регулирования («Парам. рег.»).
Если регулятор получает сигнал о наличии датчика комнатной температуры, см. раздел «Ограничение комнатной».
Регулятор не работает, регулирующий клапан закрыт? Проверьте правильность показаний датчика температуры теплоносителя, см раздел «Ежедневное использование» или «Обзор входа».
Проверьте наличие влияния других измеряемых температур.
Как добавить дополнительный комфортный период?
Дополнительный комфортный период можно установить, добавляя в меню «Период» новые отметки времени «Старт» и «Стоп».

Как удалить комфортный период?

Для удаления комфортного периода следует установить одинаковое значение времени начала и окончания.

Как восстановить персональные установки?
Ознакомьтесь с разделом «Использование ключа прораммирования».
Как восстановить заводские установки?
Ознакомьтесь с разделом «Использование ключа прораммирования».

Почему невозможно изменить установки?
Отсутствует ключ программирования ECL.

Каким образом реагировать на предупреждения?

Предупреждения указывают на неудовлетворительную работу системы. Свяжитесь с организацией, производившей установку системы.

Что означает П- и ПИ-регулирование?
П-регулирование: пропорциональное регулирование. При П-регулировании регулятор изменяет температуру теплоносителя пропорционально разнице между требуемой и текущей температурой, например, для комнатной температуры.
При П-регулировании всегда имеется отклонение, которое со временем не исчезает.
ПИ-регулирование: пропорционально-интегральное регулирование.
ПИ-регулирование действует так же, как и П-регулирование, но отклонение со временем полностью исчезает.
Большое значение параметра «Tn» обеспечивает медленное но стабильное регулирование, а малое его значение обеспечивает быстрое регулирование, но с большим риском нестабильности.

9.3 Терминология

Представленные здесь термины применимы к регуляторам Comfort 210 и ECL Comfort 310. Поэтому вы можете встретить выражения, не отраженные в настоящем руководстве.

Температура в воздуховоде

Температура, измеренная в воздухоотводе в точке контроля температуры.

Функция сигнализации

На основе параметров сигнализации регулятор активирует выход.

Антибактериальная функция

Температура ГВС повышается на определенный отрезок времени для нейтрализации опасных бактерий, например, Легионелла.

Балансовая температура

Этот параметр является основным для измерения температуры теплоносителя / воздухоотвода. Балансовая температура может быть настроена по комнатной температуре, по компенсационной температуре или по температуре обратки. Балансовая температура имеет смысл, только если имеется подсоединенный датчик комнатной температуры.

Комфортный режим

Комфортная температура в системе регулируется в соответствии с программой. В периоды отопления температура теплоносителя повышается, в периоды охлаждения, наоборот, понижается. Во время охлаждения температура теплоносителя в системе ниже, для поддержания необходимой комнатной температуры.

Комфортная температура

Температура, поддерживаемая в системе в комфортные периоды, которые обычно приходятся на дневное время.

Компенсация температуры

Измеряемая температура, устанавливающая соотношение между температурой теплоносителя и балансовой температурой.

Заданная температура подачи

Температура, рассчитанная регулятором на основе температуры наружного воздуха и влияния комнатного датчика и/или датчика температуры обратки. Эта температура используется как установка для системы регулирования.

Требуемая комнатная температура

Та температура, которую вы хотите иметь в помещении. Эта температура может регулироваться ECL Comfort, только если установлен датчик температуры воздуха в помещении.
Даже если датчик не установлен, то требуемая температура, тем не менее, будет оказывать влияние на температуру теплоносителя.
В обоих случаях комнатная температура в каждом помещении регулируется обычно с помощью радиаторных термостатов / клапанов.

Требуемая температура

Заданная или рассчитанная регулятором температура.

Температура точки росы

Температура, при которой пары воды, находящиеся в воздухе, начинают конденсироваться.

Инструкция

Контур ГВС

Контур снабжения здания горячей водой (ГВС)

Заводские настройки

настройки, сохраняемые на ключе программирования ECL для упрощения первого запуска регулятора.

Т подачи

Температура, измеренная в подающем трубопроводе в произвольный момент времен.

Задание температуры подачи

Температура, рассчитанная регулятором на основе температуры наружного воздуха под влиянием комнатного датчика и/или датчика температуры обратки. Эта температура используется как установка для системы регулирования.

Отопит. график

Кривая, показывающая соотношение между текущей температурой наружного воздуха и заданной температурой подачи.

Контур отопления

Система отопления здания или отдельного помещения.

График на выходные

Отдельные дни можно запрограммировать на режим комфорта, экономии или защиту от заморозки. Кроме того, можно выбрать дневной график с комфортным периодом с 07:00 до 23:00.

Относительная влажность

Это значение (выражаемое в \%) показывает содержание паров воды в воздухе в помещении по сравнению с насыщенным парами воды воздухом. Относительная влажность измеряется ECA 31 и используется для расчета температуры точки росы.

Ограничение температуры

Температура, устанавливающая соотношение между требуемой температурой теплоносителя и балансировочной температурой.

Функция архива

Отображается история изменения температуры.

Ведущий / ведомый

Когда два и более регулятора объединены одной шиной, ведущий обменивается информацией о времени, дате и температуре наружного воздуха. Ведомый принимает эти данные и отправляет в ответ значение заданной температуры подачи.

Датчик Pt 1000 (платиновый термометр сопротивления) Все датчики, используемые с регулятором ECL Comfort, основываются на датчике типа (IEC 751B). Сопротивление датчика составляет 1000 Ом при $0^{\circ} \mathrm{C}$. При изменении температуры на $1^{\circ} \mathrm{C}$ сопротивление датчика меняется на 3.9 Ом.

Оптимизация

Регулятор способен изменять время запуска температурных периодов, заданных в программе. Основываясь на температуре наружного воздуха, регулятор автоматически рассчитывает, когда необходимо активировать период, чтобы достичь комфортной температуры к установленному часу. Чем ниже температура наружного воздуха, тем раньше начинается отопительный период.

Изменение температуры наружного воздуха

Стрелка указывает направление изменения, т.е. повышается ли температура или падает.

Функция подпитки

Если измеренное давление в системе отопления меньше заданного (например, из-за утечки), включается подпитка.

Температура обратки

Температура, измеренная в обратном трубопроводе системы отопления.

Датчик комнатной температуры

Датчик температуры, размещенный в помещении (обычно жилом), где требуется регулирование температуры.

Комнатная температура

Температура, измеренная датчиком комнатной температуры или устройством дистанционного управления. Напрямую температура воздуха в помещении может регулироваться только при наличии датчика. Температура воздуха в помещении влияет на заданную температуру подачи.

Расписание

Программа периодов комфортной и пониженной температуры. Программа может быть составлена отдельно для каждого дня недели и может содержать до 3 комфортных периодов в день.

Экономная температура

Температура, поддерживаемая в контуре отопления / ГВС в период экономии тепла.

Управление насосом

Один циркуляционный насос работает, пока другой находится в резерве. Через определённое время они меняются ролями.

Погодная компенсация

Регулирование температуры теплоносителя на основе температуры наружного воздуха. Регулирование производится на основе установленного пользователем графика отопления.

Двухпозиционное управление

Управление вкл/выкл, например, циркуляционным насосом, клапаном распределителем или заслонкой.

Трехпозиционное управление

Открытие, закрытие или бездействие привода регулирующего клапана. Бездействие означает, что привод остается в текущем положении.

Монтажник:

До:
Дата:

[^0]: * = разгрузочный клапан

[^1]: Специальные настройки для приложения A375.1, пример б:
 Навигация:
 Номер ID: Рекоменд. настройка:
 Контур отопления (контур 1)
 Тип последовательности (код) для управления горелками:
 МЕНЮ \Настройки \Котел: "Тип последовательности"
 11072
 0

 Количество всех шагов горелки:
 МЕНЮ \Настройки \Котел: "Шаги"
 11073
 2

[^2]: Специальные настройки для приложения A375.1, пример е:
 Навигация:
 Номер ID:
 Рекоменд. настройка:

 ## Контур отопления (контур 1)

 Тип последовательности (код) для управления горелками:
 МЕНЮ \Настройки \Котел: "Тип последовательности"
 11072
 0
 Количество всех ступеней горелки:
 МЕНЮ \Настройки \Котел: "Шаги"
 11073
 4

[^3]: * Если «ДА» выбрать невозможно, значит, ключ ECL не содержит никаких специальных настроек.
 Выберите «Начать копирование» и подтвердите, выбрав «Да».

[^4]: * Можно отметить сразу несколько дней.

[^5]: S

 Функция адаптации может изменять заданную температуру подачи максимум на 8 K на значение температурного графика.

[^6]:

 Разница температуры котла симметрична относительно значения требуемой температуры котла, т.е. половина ее значения находится выше этой температуры, а другая половина - ниже.

[^7]:

 Параметр "Мин. время ВКЛ" отменяется параметром "Макс. Т огр.".

[^8]: 0: Малая яркость.
 10: Большая яркость.

