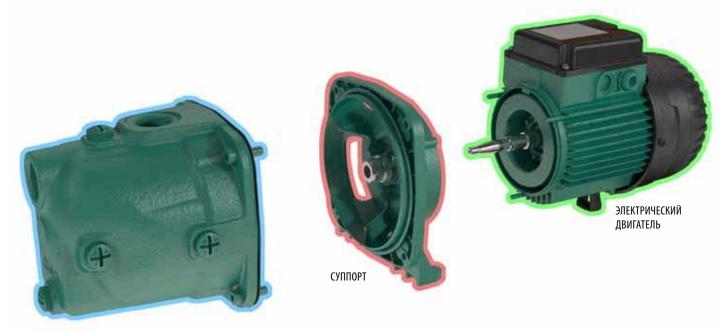


Краткое руководство по подбору насосов



УСТРОИСТВО ВОДЯНОГО НАСОСА

НАСОС - ЭТО УСТРОЙСТВО, СПОСОБНОЕ ПРЕОБРАЗОВЫВАТЬ ЭЛЕКТРОЭНЕРГИЮ В ЭНЕРГИЮ, ПЕРЕДАВАЕМУЮ ВОДЕ. ПЕРЕДАВАЕМАЯ ЭНЕРГИЯ ПРИВОДИТ К ПЕРЕМЕЩЕНИЮ ВОДЫ.

Вся водяные насосы состоят из 2-х основных частей: гидравлическая часть и электрический двигатель. Суппорт позволяет закрепить насос, и не дает ему смещаться.

ГИДРАВЛИЧЕСКАЯ ЧАСТЬ

Компоненты гидравлической части

КОРПУС	ЗАЩИЩАЕТ ГИДРАВЛИЧЕСКУЮ ЧАСТЬ НАСОСА
РАБОЧЕЕ КОЛЕСО	ПРОИЗВОДИТ И НАПРАВЛЯЕТ ДВИЖЕНИЕ ВОДЫ ВНУТРИ НАСОСА
ДИФФУЗОР	ПРЕОБРАЗОВЫВАЕТ ЭНЕРГИЮ ИЛИ ДВИЖЕНИЕ, ПРОИЗВОДИМОЕ РАБОЧИМ КОЛЕСОМ, В ДАВЛЕНИЕ
МЕХАНИЧЕСКИЙ УПЛОТНИТЕЛЬ	ПРЕПЯТСТВУЕТ КОНТАКТУ ВОДЫ С ЭЛЕКТРОДВИГАТЕЛЕМ
КОЛЬЦЕВОЙ УПЛОТНИТЕЛЬ	СОЕДИНЕЯЕТ ЧАСТИ НАСОСА

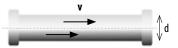
Компоненты электрического двигателя

КОРПУС	ЗАЩИЩАЕТ ВНУТРЕННИЕ ЧАСТИ ЭЛЕКТРОДВИГАТЕЛЯ
СТАТОР	ОСНОВНОЙ КОМПОНЕНТ ЭЛЕКТРОДВИГАТЕЛЯ
ВАЛ ИЛИ РОТОР	ПЕРЕДАЕТ ДВИЖЕНИЕ К ГИДРАВЛИЧЕСКОЙ ЧАСТИ
ВЕНТИЛЯТОР	ОХЛАЖДАЕТ ЭЛЕКТРОДВИГАТЕЛЬ.
подшипник	ФИКСИРУЕТ ПОЗИЦИЮ РОТОРА И ДАЕТ ЕМУ ВОЗМОЖНОСТЬ ДВИГАТЬСЯ
КЛЕММНАЯ КОРОБКА	ПЕРЕДАЕТ ЭЛЕКТРОЭНЕРГИЮ К ДВИГАТЕЛЮ

DASUBDIE HPVIHLVIIIDI PADUIDI

ЧТОБЫ ПОДОБРАТЬ НАСОС НАДО ЗНАТЬ 2 ОСНОВНЫХ ПАРАМЕТРА: РАСХОД И НАПОР

 $Q = A \times V$


А: Сечение трубы $\pi x (d/2)^2 [M^2]$

v: Скорость воды в трубе [м/с]

Q: Кол-во воды проходящей в трубе за определенный промежуток времени.

Наиболее применяемые единицы измерения:

- м3/ч
- 1литр/сек = 3,6 м3/ч
- 1 литр/мин = 0,06 м3ч

Мы рекомендуем использовать:

 $v \le 1$ м/с **→ Бытовое применение**

 $v \le 2$ м/с **→Другие применения**

 $v \le 5$ м/с **→Дренаж и стоки**

ПОТЕРИ ДАВЛЕНИЯ (НР)

Динамическая потеря энергии воды, вызванная в основном трением о стенки трубы и о компоненты системы (повороты, клапаны и т. д..). **Если не указано конкретно, считаем, что hp равно в среднем 20 % hg (в "м" или бар).**

ВЫСОТА ПОДЪЕМА (НІ)

Максимально возможная высота между напорным патрубком и точкой разбора воды (обычно кран) (м).

ВЫСОТА ВСАСЫВАНИЯ(НS)

Это высота между уровнем воды в колодце и всасывающим патрубком насоса (м).

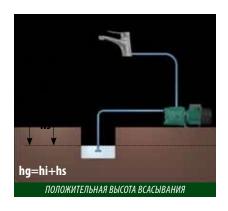
ГЕОМЕТРИЧЕСКАЯ ВЫСОТА (HG)

Это высота между уровнем воды в колодце и наиболее дальней точкой разбора воды (м)

hg = hs + hi

ТРЕБУЕМОЕ ДАВЛЕНИЕ (HR)

Требуемое давление в наиболее дальней точке разбора воды (КРАН) (20м, если не указано иное)


ОБЩАЯ МАНОМЕТРИЧЕСКАЯ ВЫСОТА НАПОРА В МЕТРАХ (НТ)

ht = hg + hp + hr

НАИБОЛЕЕ ПРИМЕНЯЕМЫЕ ЕДИНИЦЫ ИЗМЕРЕНИЯ:

- м.в.с. (метров водяного столба)
- 1 кг/см2 \approx 10 м.в.с.
- 1 бар ≈ 10 м.в.с.

МИНИМАЛЬНЫЙ РАСХОД ВОДЫ НА ОДНУ СЕМЬЮ В БЫТОВЫХ СИСТЕМАХ:

Kухня + ванная = 1,7 м 3 /ч Kухня + ванная + WC = 1,8 м 3 /ч Kухня + 2 ванные = 2 м 3 /ч Kухня + 3 ванные = 2,2 м 3 /ч

ПРИМЕРНЫЙ РАСХОД ВОДЫ ДЛЯ ПОЛИВА САДА (В ЗАВИСИМОСТИ ОТ ПЛОЩАДИ)

Площадь (M²)	100	200	300	400
Расход (м³/ч)	0,75	1,5	2,25	3

Требуется определить расход воды, необходимый для дома с 1 КУХНЕЙ и 2 ВАННЫМИ КОМНАТАМИ, с садом площадью 200 м².

KYXHS + 2 BAHH E KOMHAT E HAT E HATE HATE

ФОРМУЛЫ, ПРИМЕНЯЕМЫЕ ДЛЯ РАСЧЁТА НАСОСОВ:

	Системы отопления (Закрытый контур*)	Повышение давления
Расход Q	$Q(\text{м}^3/\text{ч}) = \frac{\text{Мощность котла (кВт) x 0,86}}{\Delta t^\circ(\text{ C})}$ Необходимо учитывать, что: $\Delta t^\circ \approx 20^\circ\text{C}$ для отопления радиаторами $\Delta t^\circ \approx 5\text{-}10^\circ\text{C}$ для систем "теплый пол	Q(л/мин) = кол-во потребителей х 12 (л/мин) х 0,30 12 (л/мин) = средний расход душа 0,30 = рассмотрим коэффициент, который выражен в % (30% для многоквартирных домов) ** квартиры с 2 ванными → +30% Q квартиры с 3 ванными → +25% Q квартиры с 4 ванными → +20% Q • квартиры с 4 ванными → +20% Q
Напор Н	 H = разница давлений (перепад) (Δр) = потери давления в сети Потери давления в системе могут быть расчитаны, как сумма всех локальных сопротивлений каждого элемента отопительной системы, таких как бойлер, радиаторов, клапанов и т.п. Чтобы Вам помочь в расчётах, на стр.27 Вы найдете сводную таблицу по сопротивлению основных компонентов отопительной системы. 	 ht = hg + 20% hg + hr ht = общие потери системы или давления (м) hg = hs+hi; геометрическая высота, существующая между уровнем воды на всасывании и наиболее дальней точкой разбора воды (м) hs = высота, существующая между уровнем воды и патрубком всасывания насоса (м). hi = высота, существующая между напорным патрубком подачи насоса и наиболее дальней точкой разбора воды (м). hr = требуемое давление в наиболее дальней точке разбора воды (20 м, если не указать иное).

* Примеры систем отопления стр. 27

ІКак быстро подобрать насос на основании ваших требований

ПРИМЕЧАНИЕ

- Таблицы подбора, имеющиеся в данном руководстве, были сделаны для быстрой ориентации при выборе насосов. В случае вопросов, просим обращаться в технический отдел DAB.
- Расчеты, сделанные в данном каталоге, выполнены со ссылкой на новый СТЕ (Технический Строительный Кодекс).
- В других случаях, не предусмотренных в руководстве, перед выбором насоса, просим проконсультироваться с техническим отделом DAB.

^{**} Примеры расхода воды в зависимости от системы воды. стр. 7

JET, JETINOX, JETCOM И К 30/70

Центробежные одноступенчатые насосы с системой Вентури, что позволяет насосу самостоятельно всасывать воду с глубины до 8 метров.

ПРИМЕНЕНИЕ

- Водоснабжение домов на одну семью.
- Полив огородов и небольших садов.
- Промывочные системы.
- И для других применений (обратитесь в технический отдел DAB).

ПАРАМЕТРЫ

- Расход от 0,4 до 10,5 м³/ч с макс. напором до 62 м.
- Температура воды от -10°С до 40°С.
- Перекачиваемая жидкость должна быть чистой, не содержащей твердых или абразивных веществ, химически нейтральной.

ВАЖНО

(ПОДХОДИТ ДЛЯ ИСПОЛЬЗОВАНИЯ С ПРИБОРАМИ УПРАВЛЕНИЯ ACTIVE, SMART PRESS AND ACTIVE DRIVER)

- Самовсасывающий насос до 8 метров.
- Расположить насос как можно ближе к перекачиваемой жидкости.
- Внутренний диаметр трубы не должен быть меньше диаметра патрубков насоса.
- Когда высота напора превышает четыре метра, рекомендуется использовать напорную трубу с большим диаметром, относительно патрубка всасывания;
- Установить на всасывании донный клапан или обратный клапан.
- Не запускать насос, не заполнив его предварительно жидкостью.
- Чтобы не перегревать двигатель, рекомендуется не превышать предел в 20 запусков в час;
- Насос надежно крепится на своем основании, что позволяет поглотить вибрации, вызванные при эксплуатации.
- Монтаж насоса только в горизонтальном положении.

Приборы	Расход (л/мин)
Унитаз с быстрым сливом	90
Ванная	15
Душевая кабинка	12
Стиральная машинка	12
Посудомоечная машинка	10
Мойка	9
Раковина	6
Биде	6
Унитаз с накопительным баком	6

BDIDUP HACUCUB JEI, JEIINUX AND JEICUM

Требуется подать воду в небольшой дом с 2 этажами, из расположенного поблизости колодца. В доме имеется 1 КУХНЯ и 2 ВАННЫХ КОМНАТЫ. Уровень воды внутри колодца, по отношению к всасывающему патрубку насоса, находится на hs (всасывание) = 5м.

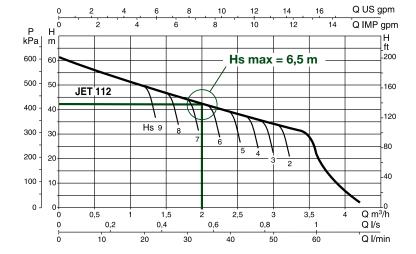
Если не указано иначе, hp (потери давления системы) = 20% hg. Высота этажа = 3м.

	Кухня + ванная	Кухня + ванная + WC	Кухня + 2 ванные	Кухня + 2 ванные + 100 м² сада
1 этаж	JET 82 / hsmax = 7 _M	JET 102 / hsmax = 7M	JET $102 / hsmax = 7 M$	JET 132 / hsmax = 7M
2 этаж	JET 102 / hsmax = 7м	JET 102 / hsmax=6,5м	JET 112 / hsmax=6,5 м	JET 132 / hsmax = 7 м
3 этаж	JET 132 / hsmax = 7м	JET 132 / hsmax = 7м	JET 151 / hsmax = 7 м	JET 151 / hsmax=5,5м

^{*} hs макс.: максимальная высота трубы всасывания для правильной работы установленного насоса.

ТЕОРЕТИЧЕСКИЙ ВЫБОР

Данные:


- 1. Кол-во этажей = 2
- 2. Кол-во ванных = 2
- 3. hi = 3м x 2 этажа = 6м
- 4. hs = 5M
- 5. hg = 5M + 6M = 11M

Расход и напор: (см.стр.6)

$$ht = 11M + 2.2M + 20M = 33.2M$$

 $Q = 2 M^{3}/4$

hs макс (макс. всасывание) = 6,5м.

Это означает, что данный насос будет работать правильно, всякий раз когда разница уровней между конечной частью трубы всасывания и патрубком всасывания насоса будет меньше или равна 6,5 м. В данном примере hs = 5 м, то есть меньше чем 6,5 м, значить выбранный насос будет работать правильно.

^{*} Данные, приведенные в таблице и на графике, действительны для насосов JET, JETINOX и JETCOM.

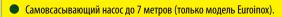
^{*} В случаях, не указанных в таблице, просим обращаться в технический отдел DAB.

^{*} Насосы могут быть однофазные или трехфазные (см. документацию DAB).

EUROINOX, EURO И EUROCOM

Многоступенчатый центробежный насос (от 3 до 5 рабочих колес) обеспечивает высокое давление и расход при тихой работе.

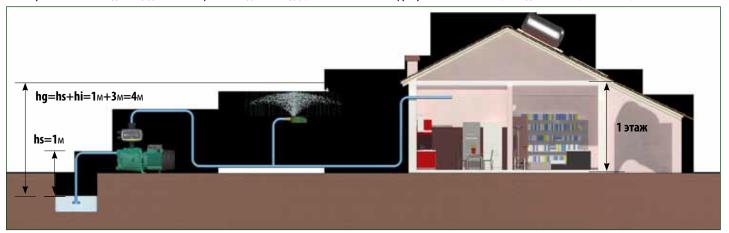
ПРИМЕНЕНИЕ


- Водоснабжение небольших домов и коттеджей.
- Полив небольших садов и огородов.
- Промывочные системы.
- Другое применение (проконсультируйтесь с техническим отделом DAB)

ПАРАМЕТРЫ

- Расход от 0,4 до 7,2 м³/ч с макс. высотой напора, равной 72м.
- Рабочий диапазон температур от 0°C до +40°C.
- Перекачиваемая жидкость должна быть чистой, не содержащей твердых или абразивных веществ, химически нейтральной.

- Установите насос как можно ближе к перекачиваемой жидкости.
- Внутренний диаметр трубы не должен быть меньше диаметра патрубков насоса.
- Когда высота напора превышает 4 метра, рекомендуется использовать напорную трубу с большим диаметром, по отношению к всасывающему патрубку насоса (только модель Euroinox).
- Установить на всасывании обратный клапан.
- Не запускать насос, не заполнив его предварительно жидкостью.
- Чтобы не перегревать двигатель, рекомендуется не превышать предел в 20 запусков/час.
- Во избежание вибраций надежно закрепите насос на основание.
- Насос должен быть установлен горизонтально.



BDIDUP HACUCUB EURUINUX, EURU AND EURUPKU

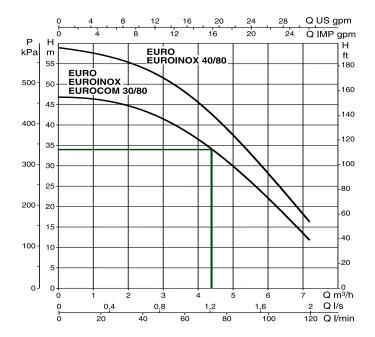
Требуется подать воду в небольшой дом с 1 этажом, из расположенного поблизости колодца. В доме имеется 1 КУХНЯ и 2 ВАННЫЕ КОМНАТЫ. Помимо этого нужно поливать сад площадью 300м². Уровень воды в колодце, по отношению к патрубку васывания насоса, находится на hs (всасывание) = 1м.

Если не указано иначе, hp (потери давления в системе) = 20% hg. Высота этажа = 3м.

	Кухня + ванная	Кухня + ванная + WC	Кухня + 2 ванные	КУХНЯ + 2 ВАННЫЕ + САД 100 м²
1 этаж	EUROINOX 30/30	EUROINOX 30/30	EUROINOX 30/50	EUROINOX 30/80
2 этажа	EUROINOX 40/30	EUROINOX 40/30	EUROINOX 40/50	EUROINOX 30/80
3 этажа	EUROINOX 40/30	EUROINOX 40/30	EUROINOX 40/50	EUROINOX 40/80

- * Данные, приведенные в таблице и на графике, даны для насосов EURO, EUROINOX и EUROCOM
- * В случаях, не указанных в таблице, просим обращаться в технический отдел DAB.
- * Насосы могут быть однофазные или трехфазные (см. документацию DAB).

Данные:


- Кол-во этажей = 1
- 2. Кол-во ванных = 2
- 3. hi = 3м x 1 этаж = 3м
- 4. hs = 1M
- 5. hg = 1M + 3M = 4M
- 6. 300м² сада

Расход и напор: (см. стр. 6) ht = 4M + 0.8M + 20M = 24.8M

 $Q = 2M^3/4 + 2,25M^3/4$ (сад) = 4,25 $M^3/4$

KUHTPUJID BUZDI HA BAWE YUMUTPEHNE

AQUAJET, SMART PRESS И ACTIVE SYSTEM (АВТОМАТИЧЕСКИЕ СТАНЦИИ)

ПАРАМЕТРЫ

- Система оборудована мембранным резервуаром, реле давления, манометром, соединениями и гибким шлангом.
- Система позволяет регулировать давление станции при помощи регулирования реле давления и накопления воды в резервуаре.

- Система позволяет поддерживать при запуске минимальное давление 1,5 бар при помощи электронного устройства
- Защита системы от сухого хода
- Smart Press имеет световую индикацию для контроля работы системы.
- Возможность сброса системы вручную.
- Встроенная защита от гидроударов.

(JET, JETINOX, JETCOM) + SMART PRESS (SP) / AQUAJET

	Кухня	Кухня + ванная +	Кухня +
	+ ванная	прачечная	2 ванные
1 этаж	JET 82 M + SP / hsmax = 7 M	JET 102 M + SP / hsmax = 7 _M	JET 102 M + SP / hsmax = 7M
2 этажа	JET 102 M + SP / hsmax = 7 _M	JET 102 M + SP / hsmax = 7 _M	JET 112 M $+$ SP $/$ hsmax $=$ 7M
3 этажа	JET 102 M + SP / hsmax = 7 _M	JET 132 M $+$ SP $/$ hsmax $=$ 7 M	

(EUROINOX, EURO, EUROCOM) + SMART PRESS (SP)

	Кухня	Кухня + ванная	Кухня
	+ ванная	+ прачечная	+ 2 ванные
1 этаж	EUROINOX 30/30 M + SP	EUROINOX 30/30 M + SP	EUROINOX 40/50 M + SP
2 этажа	EUROINOX 40/30 M + SP	EUROINOX 40/30 M + SP	EUROINOX 40/50 M + SP
3 этажа	EUROINOX 40/30 M + SP	EUROINOX 40/30 M + SP	EUROINOX 40/50 M + SP

ПРИМЕЧАНИЯ

- hs макс.: максимальная длина всасывающего патрубка для правильной работы установленного насоса.
- В случаях, не указанных в таблице, просим обращаться в технический отдел DAB.

ACTIVE SYSTEM

ПАРАМЕТРЫ

- Управляет насосом и предотвращает сухой ход, в случае отсутствия воды.
- Восстанавливает давление, периодически запускаясь.
- Гарантирует устойчивое давления в гидравлической системе.
- Обеспечивает электронный контроль за давлением на этапе запуска.
- Препятствует возникновению гидравлического удара.
- Небольшие габариты.

ВАЖНО

- Встроенный обратный клапан, манометр и гибкий патрубок (напорный).
- Встроенный датчик температуры: останавливает насос при температуре более +40°С.

ПРИМЕЧАНИЕ

- Можно комбинировать звуковую и световую тревоги. • В случае электронных неполадок, можно соединить насос напрямую с электросетью.
- Необходимо установить донный клапан в конце трубы всасывания для того, чтобы избежать опустошения насоса. Перед тем, как запускать насос, необходимо полностью наполнить его водой, чтобы избежать образование воздушных пробок. Насос должен всегда устанавливаться в горизонтальном положении.

- hs макс.: максимальная высота трубы всасывания для правильной работы установленного насоса.
- В иных случаях, просим обращаться в технический отдел DAB.

ACTIVE (Jet, Jetinox, Jetcom)

■ Пусковое давление регулируется между 1,5 и 2,5 бар

	Кухня	Кухня + ванная	Кухня +
	+ванная	+WC	2 ванные
1 этаж	ACTIVE J 82 M / hsmax = 7 M	ACTIVE J 102 M / hsmax = 7 M	ACTIVE J 102 M / hsmax = 7M
2 этажа	ACTIVE J 102 M / hsmax = 7M	ACTIVE J 102 M / hsmax = 7M	ACTIVE J 112 M / hsmax = 7м
3 этажа	ACTIVE J 102 M / hsmax = 7 м	ACTIVE J 132 M / hsmax = 7 M	

ACTIVE (Euroinox, Euro, Eurocom)

	Кухня Кухня + ванная		Кухня +
	+ ванная	+WC	2 ванные
1 этаж	ACTIVE EI 30/30 M	ACTIVE EI 30/30 M	ACTIVE EI 30/50 M
2 этажа	ACTIVE EI 40/30 M	ACTIVE EI 40/30 M	ACTIVE EI 40/50 M
3 этажа	ACTIVE EI 40/30 M	ACTIVE EI 40/30 M	ACTIVE EI 40/50 M

HUJIHDIN KUHTPUJID 3A KUMWUPTUM N JHEPI NEN

АВТОМАТИЧЕСКИЙ КОНТРОЛЬ ЗА НАСОСОМ

Макс. мощность насоса при использовании инвертора 5.6 кВт

Доступная гамма инверторов Active Driver:

Модель	Tok (A)	Частота 50 HZ	Напряжение	Для насосов
A.D M/M 1.1	8,5	1 x 230 V	1 x 230 V	PULSAR/DRY, 4" PUMP JET/ INOX, EURO/INOX
A D M/M 1 E	11	1 x 115 V	1 x 115 V	PULSAR/DRY, 4" PUMP JET/
A.D M/M 1.5	/M 1.5 11	1 x 230 V	1 x 230 V	INOX, EURO/INOX
A.D M/M 1.8	14	1 x 115 V	1 x 115 V	PULSAR/DRY, 4" PUMP JET/
A.D IVI/IVI 1.0	14	1 x 230 V	1 x 230 V	INOX, EURO/INOX
A.D M/T 1.0	4,7	1 x 230 V	3 x 230 V	PULSAR/DRY, 4" PUMP JET/ INOX, EURO/INOX
A.D M/T 2.2	10,5	1 x 230 V	3 x 230 V	PULSAR/DRY, 4" PUMP JET/ INOX, EURO/INOX
A.D T/T 3.0	7,5	3 x 400 V	3 x 400 V	PULSAR/DRY, 4" PUMP JET/ INOX, EURO/INOX
A.D T/T 5.5	13,3	3 x 400 V	3 x 400 V	PULSAR/DRY, 4" PUMP JET/ INOX, EURO/INOX

ПАРАМЕТРЫ

- Поддерживает постоянное давление системы.
- Значительно облегчает программирование.
- Регулирует и контролирует скорость насосов.
- Защищает насосы в случае отсутствия воды, и, согласно нормативам, защищает от перепадов напряжения.
- В случае остановки восстанавливается автоматически.
- Если напряжение сети снижается, Active Driver восстанавливает систему после подачи напряжения 220 В (-20%- +10%).
- Встроенный обратный клапан.
- Можно запрограммировать 2 точки рабочего давления (но не у M/M 1.1 и M/T 1.0).

ВАЖНО

- Может монтироваться с любым насосом для холодной воды при условии соблюдения критериев.
- Bыбор ACTIVE DRIVER произодится в соответствии с электросетью и номинальным током насоса
- Установка только в вертикальном положении.
- Установите расширительный бак менее 20 л примерно на 1 м от выхода ACTIVE DRIVER .
- Не требуется установки электрического щита защиты.
- Перед запуском нужно очистить внутреннюю часть труб.

ПРИМЕЧАНИЕ

- А. D. выбирается в зависимости от номинального тока насоса и типа электропитания.
- За дополнительной информацией обращаться в технический отдел DAB.

ЭЛЕКТРОППАЯ СИСТЕМА ПОВВІШЕНИЯ ДАВЛЕНИЯ

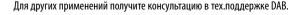
E.sybox новое готовое решение для повышения давления в частных домах, коттеджах и жилых зданиях.

ПАРАМЕТРЫ

- Электронный инвертор (поддержание давления).
- Защиты от сухого хода, перегрузок и перегрева.
- Самовсасывающий насос (до 8 метров).
- LCD-дисплей высокого разрешения.
- Встроенный расширительный бачок на 2 литра.
- Встроенный обратный клапан.
- Двигатель с водяным охлаждением (очень тихий).
- WIFI соединение.
- Система предотвращения замораживания "АНТИ-ФРИЗ"

ПРИМЕНЕНИЕ

- Беспроводное соединение.
- Готовое решения для водоснабжения дома.
- Промывочные системы
- Для других применений получите консультацию в тех.отделе DAB.


ВАЖНО

- Станцию можно устанавливать горизонтально, вертикально и на стене.
- Внутренний диаметр труб должен быть равным диаметру патрубков станции.
- Обязательна установка обратного клапана на всасывающей линии.
- Перед запуском обязательно заполнить станцию водой.
- Следите за тем, чтобы давление в расширительном баке было на 0.7 бар ниже от установленного давления станции.
- Не требуется электрический щит управления.
- Можно установить в каскаде до 4-х станций, чтобы увеличить производительность системы.

Подбор станции очень прост, так как для частного дома он подходит для всех применений.

	Кухня + ванная	Кухня + ванная + WC	Кухня + 2 ванные	Кухня + 2 ванные + 100 м² сада
1 этаж	e.sybox	e.sybox	e.sybox	e.sybox
2 этажа	e.sybox	e.sybox	e.sybox	e.sybox
3 этажа	e.sybox	e.sybox	e.sybox	e.sybox

ЭЛЕКТРОППАЯ СИСТЕМА ПОВВІШЕНИЯ ДАВЛЕНИЯ

ТАБЛИЦА ПОДБОРА Е.SYBOX ДЛЯ МНОГОКВАРТИРНОГО ДОМА

При использовании атмосферного накопительного бака. При использовании бака под давлением каждый 1 бар дает уменьшение на 3 уровня.

	МАХ N° КВАРТИР. Ранная +	МАХ N° КВАРТИР + 2 ВАННЫЕ	МАХ N° КВАРТИР + 3 ВАННЫЕ
1 этаж	9	5	4
2 этажа	8	5	4
3 этажа	8	5	4
4 этажа	7	4	
5 этажей	7		-
6 этажей	6		

Требуется обеспечить водой небольшой многоквартирный дом. В доме имеется 3 этажа и 6 квартир. Каждая квартира имеет 1 ванную. В таблице ниже смотрим, что нам подойдет.

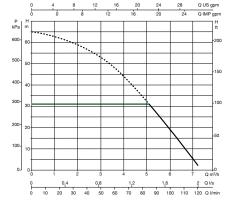
ТЕОРЕТИЧЕСКИЙ ВЫБОР

Данные:

- Кол-во этажей = 3
- 2. Кол-во квартир = 6
- 3. Кол-во ванных в квартире = 1

Расход и напор (см.стр. 6))

hi = 3м x 3 этажа = 9м


hs = 0M

hg = 0 + 9 = 9M

ht = 9M + 20%(9M) + 20M = 30.8M

Q = 11л/мин x 6 = 66 л/мин

ПОДБОР TWIN E.SYBOX ДЛЯ МНОГОКВАРТИРНОГО ДОМА

При использовании атмосферного накопительного бака. При использовании бака под давлением каждый 1 бар дает уменьшение на 3 этажа.

	МАХ N° КВАРТИР + ВАННАЯ	МАХ N° КВАРТИР + 2 ВАННЫЕ	МАХ N° КВАРТИР + 3 ВАННЫЕ
1 этаж	17	11	8
2 этажа	16	10	8
3 этажа	16	10	8
4 этажа	15	9	7
5 этажей	14	8	7
6 этажей	13	8	6
7 этажей	12	7	
8 этажей	11		

Требуется обеспечить водой дом в 6 этажей с 15 квартирами. Каждая квартира имеет 1 ванную. Дом имеет расширительный бак на 1.5 Бар. В таком случае мы учитываем вместо 6 этажей, 6-4 этажа = 2 этажа. Ниже в таблице варианты подбора.

9 этажей

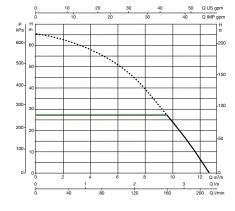
ТЕОРЕТИЧЕСКИЙ ВЫБОР

Данные:

- 1. Nº этажей = 6
- 2. N° квартир = 15
- 3. N° ванных в квартире = 1
- 4. hs = -1.5 bar

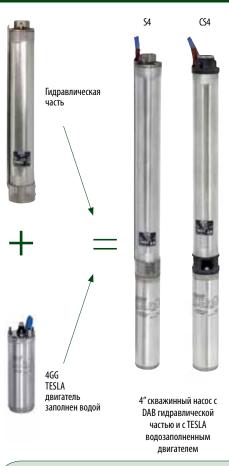
Расход и напор (см.стр. 6)

hi = 3м x 6 этажей = 18м


hs = -1.5 bar = -15 M

hg = -15 + 18 = 3M

ht = 3M + 20%(18M) + 20M = 26,6M


Q = 11 л/мин x 15 = 165л/мин



ғ пасосы: глуоина воды никогда не была проблемой

ПРИМЕНЕНИЕ

- Водоснабжение домов на одну семью.
- Полив сада и огорода.
- Наполнение емкостей и резервуаров.
- Промывочные системы.
- И другие применения (консультация тех.отдела DAB).

ПАРАМЕТРЫ

маслозаполненным

двигателем

- Подходит для установки в колодцы.
- Встроенный обратный клапан.
- Расход от 0.24 до 24 м³/ч с напором до 320м.
- Допустимое содержание песка: 120 гр/м³.
- Рабочий диапазон температур от 0°С до +40°С.

ВАЖНО

- Установите обратный клапан на расстоянии 2 метров от напорного патрубка насоса во избежание гидравлического удара.
- Минимальное расстояние до дна скважины 1 метр.
- Для защиты насоса рекомендуется установка ACTIVE DRIVER, CONTROL BOX и.т.п.
- Сечение кабеля зависит от глубины установки насоса.
- Максм. кол-во пусков в час = 20 (показатель может быть выше при использовании ACTIVE DRIVER).
- Важно проверить направление вращения двигателя (для 3х-фазных двигателей).
- Рекомендуется использовать подающие воду шланги такого же диаметра, как и напорный патрубок насоса.

ПРИМЕЧАНИЕ

Гидравлическую часть и двигатель можно заказать вместе или раздельно.

Требуется установить 4" скважинный насос для обеспечения водой 2-х этажного дома. В доме есть 1 кухня и 2 ванные (одна из которых на 2-м этаже). Глубина скважины 70 метров.

Если не указано иначе, hp (потери давления в системы) = 20% Высота этажа = 3м.

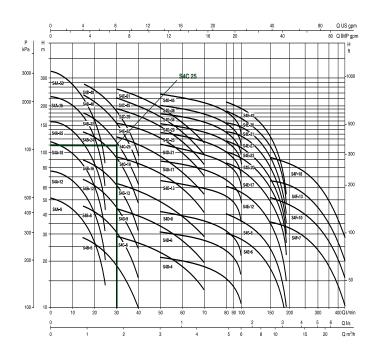
	Кухня + ванная	Кухня + ванная + WC	Кухня + 2 ванные	Кухня + 2 ванные + 100 м² сада
1 этаж	S4B - 32	S4B - 32	S4C-25	S4C-32
2 этаж	S4B - 32	S4B - 32	S4C-25	S4C-32
3 этаж	S4B - 32	S4B - 32	S4C-25	S4C-32

^{*} Насосы могут быть однофазные или трехфазные (см. документацию DAB).

ТЕОРЕТИЧЕСКИЙ ВЫБОР

Данные:

1. N° ванн = 2


2. № этажей = 2

3. hg = 70м (глубина) + (3м x 2 этажа) = 76м

Расход и напор: (см.стр. 6)

ht = 76M + 15.6M + 20M = 106.7M

 $Q = 1.7 \text{ m}^3/\text{час}$

^{*} В случаях, не указанных в таблице, просим обращаться в технический отдел DAB.

PULSAK, DIVER II DIVERTUN - HULDUP HACUCA

PULSAR, DIVER ИЛИ DIVERTRON

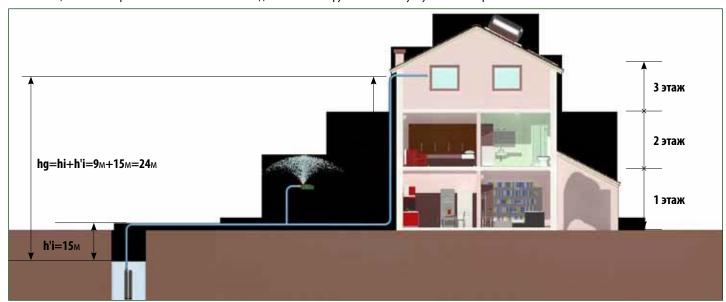
Многоступенчатый моноблочный погружной насос или насос в "сухом" исполнении (PULSAR DRY)



- Водоснабжение для домов на одну семью.
- Полив огородов и небольших садов.
- Наполнение резервуаров и цистерн.
- Промывочные системы
- И для других применений (обратитесь в технический отдел DAB).

ПАРАМЕТРЫ

- Идеально подходит для колодцев.
- Совершенно бесшумный.
- Расход от 0,9 до 7,2 м³/ч с напором до 86м.
- Максимальное допустимое количество песка: 50 г/м³.
- Максимальная глубина погружения: 20м.


- 🌑 Необходим обратный клапан, примерно на расстоянии 2м выше напорного патрубка насоса, чтобы избежать гидравлического удара.
- Установить насос погруженным на минимальном расстоянии около 1 м до дна колодца.
- Установить необходимые средства для защиты насоса, такие, как, например ACTIVE DRIVER, CONTROL BOX и т. д.
- Выбор кабеля зависит от глубины установки насоса.
- Макс. число запусков/час= 20. (с ACTIVE DRIVER можно увеличить это значение).
- Проверить направление вращения двигателя насоса (для 3х-фазных двигателей).
- Следует использовать трубу подачи с таким же диаметром, что и напорный патрубок насоса.
- Работает как вертикально, так и горизонтально.

PULSAK, DIVEK VI DIVEKTKUN HULDUP HACUCA

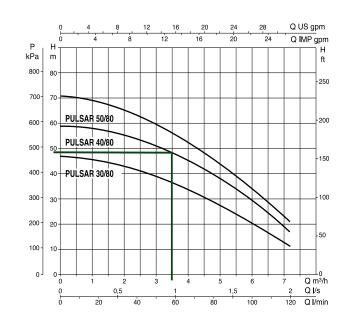
Требуется обеспечить водой дом 3-х этажный дом. В доме есть 1 КУХНЯ, 2 ВАННЫХ КОМНАТЫ и ОДИН САД ПЛОЩАДЬЮ 200 м², и что важно, чтобы насос работал как можно тише. Насос должен быть погружен в скважину глубиной15 метров.

Если не указано иначе, hp (потердавления в системе) = 20% hg. Высота этажа = 3м.

	Кухня + ванная	Кухня + ванная + WC	Кухня + 2 ванные	Кухня + 2 ванные + 100м² сада
1 этаж	PULSAR 30/50	PULSAR 30/50	PULSAR 40/50	PULSAR 30/80
2 этажа	PULSAR 40/50	PULSAR 40/50	PULSAR 30/80	PULSAR 40/80
3 этажа	PULSAR 40/50	PULSAR 40/50	PULSAR 30/80	PULSAR 40/80
4 этажа	PULSAR 50/50	PULSAR 50/50	PULSAR 30/80	PULSAR 40/80

- * Данные, приведенные в таблице и на графике, действительны для насосов PULSAR и PULSAR DRY.
- * В иных случаях, не указанных в таблице, просим обращаться в технический отдел DAB.
- * Насосы могут быть однофазные или трехфазные (см. документацию DAB).

ТЕОРЕТИЧЕСКИЙ ВЫБОР


Данные:

- 1. № этажей = 3
- 2. N° ванн = 2
- 3.200м 2 сада = 1,5 м 3 /ч
- 4. hg = 15м (глубина) + (3м x 3 этажа) = 24м

Расход и напор (см.стр.6)

$$ht = 24M + 4.8M + 20M = 48.8M$$

 $Q = 2M^3/4 + 1,5M^3/4 = 3,5M^3/4$

Для этого применения нужно использовать теоретический выбор, поскольку в таблице не указан данный пример. Решением является установка PULSAR или PULSAR DRY 40/80, как показано на гидравлическом графике.

PULSAK, DIVEK II DIVEKTKUN - HUADUP HACUCA

Требуется обеспечить водой дом с 3-х этажный дом. В доме есть 1 кухня, 2 ванные, и что важно, чтобы насос работал как можно тише. Насос устанавливается в ёмкость на глубину 4 метра. Требуется блок управление на ВКЛ-ВЫКЛ насоса.

Если не указано иначе, hp (потердавления в системе) = 20% hg. Высота этажа = 3м.

ТЕОРЕТИЧЕСКИЙ ВЫБОР

Данные:

- 1. N° этажей = 3
- 2. № ванных = 2
- 3. hg = 4м (глубина) + (3м x 3 этажа) = 13м

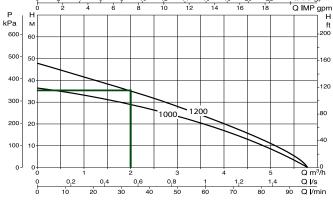
Расход и напор (см.стр. 6)

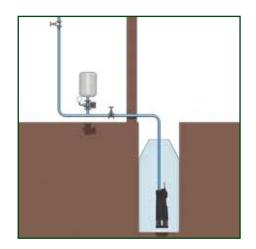
ht = 13M + 2.6M + 20M = 35.6M

 $Q = 2M^3/4$

Решением задания может быть установка насоса Diverton 1200, как показано на гидравлическом графике.

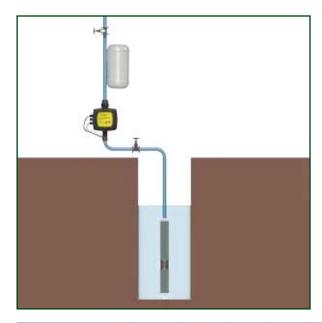
КОМПЛЕКТАЦИЯ УСТАНОВКИ





- Обратный клапан
- Датчик давления
- Расширительный бак на 2 литра
- Трубы (мин. 1")
- Кабель питания

МАХ глубина установки насоса: 15м


TIPEVIIVIYЩECTBA YCIAHOBKVI ACTIVE DKIVEK

Будущее с ACTIVE DRIVER

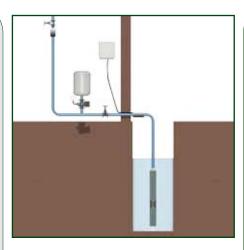
КОМПЛЕКТАЦИЯ ДЛЯ УСТАНОВКИ

· (0)

- Скважинный насос
- Обратный клапан
- Трубы
- Кабель питания к насосу и к ACTIVE DRIVER
- Расширительный бачок (до 20 литров).
 Устанавливается после Active Driver.

ПРАВИЛЬНЫЙ ПОДБОР ACTIVE DRIVER:

TESLA двигатель	1x220 V	3x220 V	3x400 V	ln	ACTIVE DRIVER
Motor 4GG M-0,37kw				3,3	M/M 1.1
Motor 4GG T-0,37kw				2,7	M/T 1.0
Motor 4GG T-0,37Kw				1,4	T/T 3.0
Motor 4GG M-0,55Kw				4,6	M/M 1.1
Motor4GG T-0,55Kw				3,3	M/T 1.0
Motor4GG T-0,55Kw				1,9	T/T 3.0
Motor 4GG M-0,75Kw				6,2	M/M 1.1
Motor 4GG T-0,75Kw				4,1	M/T 1.0
Motor 4GG T-0,75Kw				2,4	T/T 3.0
Motor 4GG M-1,1Kw				8,6	M/M 1.5
Motor 4GG T-1,1Kw				5,7	M/T 2.2


TESLA двигатель	1x220 V	3x220 V	3x400 V	In	ACTIVE DRIVER
Motor 4GG T-1,1Kw				3,4	T/T 3.0
Motor 4GG M-1,5Kw				11	M/M 1.8
Motor 4GG T-1,5Kw				7,6	M/T 2.2
Motor 4GG T-1,5Kw				4,4	T/T 3.0
Motor 4GG M-2,2Kw				16	No
Motor 4GG T-2,2Kw				10,2	M/T 2.2
Motor 4GG T-2,2Kw				5,9	T/T 3.0
Motor 4GG T-3Kw				14,3	No
Motor 4GG T-3Kw				8,3	T/T 5.5
Motor 4GG T-4Kw				17,3	No
Motor 4GG T-4Kw				10	T/T 5.5

Прошлое без ACTIVE DRIVER

КОМПЛЕКТАЦИЯ ДЛЯ УСТАНОВКИ

- Скважинный насос
- Обратный клапан
- 5-ходовой клапан
- Датчик потока
- Датчик давления
- Расширительный бак
- Соединительные трубки
- Блок управления
- Защита от сухого хода
- Кабель питания
- Кабель для датчика давления
- Датчик уровня воды

ЭКОНОМИЯ ПРИ МОНТАЖЕ

В ЗАВИСИМОСТИ ОТ ТИПА УСТАНОВКИ МОЖНО СНИЗИТЬ СТОИМОСТЬ ЗА СЧЁТ:

- Кол-во трудочасов
- Расширительный бак
- 5-ходовой клапан
- Датчик давления
- Блок управления
- Датчики защиты
- Кол-во кабеля

ПАДЕЖПОСТО И ЭКОПОМИЯ ДЛЯ ДОМА

FEKA, NOVA, VERTY NOVA И NOVA UP

NOVA 300

Погружные дренажные насосы с надежным асинхронным двигателем

ПРИМЕНЕНИЕ

VERTY NOVA

NOVA UP

- Дренаж вод из подвалов и гаражей.
- Колодцы для сбора дождевой воды.
- Дренажные колодцы.

FEKA 600

- Подъём воды из ёмкостей и рек.
- И для других применений (обратитесь в технический отдел DAB).
- NOVA: Подходит для перекачивания сточных вод, не содержащих волоконистых включений.
- FEKA: Подходит для перекачивания канализационных вод из септиков.

ПАРАМЕТРЫ



- Расход от 1 до 16 м³/ч с макс. напором до 10,2м.
- Температура воды должен от 0°С до +35°С.
- Проходящий размер гранул варьируется от 5 мм до 25 мм, в зависимости от модели.
- Максимальное погружение: до 7м.
- Легкий вес для транспортировки.

Пример с VERTY NOVA

Пример с NOVA UP

- Внутренний диаметр трубы не должен быть меньше диаметра напорного патрубка насоса.
- Всегда монтировать насос вертикально.
- Для моделей со встроенным поплавком, перед монтажом нужно проверить, чтобы поплавок двигался без затруднений.
- Не выполнять соединения в присутствии людей внутри резервуара, в котором установлен насос.
- Полностью погрузить насос, чтобы избежать перегрева двигателя насоса.
- Проверить, что отсутствуют воздушные пробки.

B3BEMERHDIE MACTVILDI HUZI KURTPUJIEWI

Погружные центробежные насосы из нержавеющей стали, с механическим уплотнителем и масляной камерой.

ПРИМЕНЕНИЕ

- Подъем сточных вод.
- Идеально подходят для установки с FEKABOX и FEKAFOS.
- Для других применений (обратитесь в технический отдел DAB).

ПАРАМЕТРЫ

- Корпус насоса и рабочее колесо из нержавеющей стали. (Feka VS)
- Корпус насоса и рабочее колесо из технополимера. (Feka VX)
- Расход от 0 до 32 м³/ч с макс. напором до 14м.
- Температура воды от 0°С до +50°С.
- Максимальная глубина погружения: 10м.
- Прохождение твердых частиц до 50мм.

- Насос может быть переносным или неподвижным, но должен всегда устанавливаться в вертикальном положении.
- Необходимо монтировать опору для подъема насоса, чтобы он не опирался на землю.
- Внутренний диаметр трубы не должен быть меньше диаметра напорного патрубка насоса.
- Полностью погрузить насос, чтобы избежать перегрева двигателя.
- Проверить, что отсутствуют воздушные пробки.

Станция автоматическая для подъема сбора и подъема сточных и дождевых вод.

ПРИМЕНЕНИЕ

- подходит для сбора дождевой воды.
- Идеально подходит для сбора и отвода сточных вод в коллективные системы отвода сточных вод.
- Другие применения (консультация специалиста DAB) .

ПАРАМЕТРЫ

- Емкость из полиэтилена высокой прочности.
- 3 варианта ёмкостей 200-280-550 литров.
- 2 встроенных поплавка и подъёмных механизма.
- Герметичная крышка.
- Встроенный подъёмник для насоса.

ВАЖНО

- Станции имееют встроенные поплавковые выключатели для использования с 1-м или 2-мя однофазными насосами или 3-х-фазными (в зависимости от модели Требуется установка электрического шкафа управления.
- Если установлены 2 насоса в станцию Fekafos они могут работать попеременно.
- Насосы монтируются на подъемное устройство снаружи
- Требуется установка обратного клапана, для предотвращения обратного потока.
- Для доп.информации по аксессуарами звоните в тех.отдел DAB.

FEKABOX

Автоматическая станция подъёма сточных вод и сбора дождевой воды.

ПАРАМЕТРЫ

Идеально подходит для сбора дождевой воды.

ПРИМЕНЕНИЕ

- Идеально подходит для сбора и отвода сточных вод в коллективные системы отвода сточных вод.
- И другие применения (консультация специалиста).

- Ёмкость из прочного полиэтилена.
- 3 варианта объёма 110-200-280 литров.
- Герметичная крышка.
- FEKABOX 280 оборудован 2" PVC монтажным комплектом.

- Не нужен щит управления.
- Станция работает с поплавковым насосом.
- По доп.аксессуарам (консультация специалиста DAB).

TIUADOL ARIOMAINAECKON CIAHANN DES HAODIEM

Дождевая вода	Мокрая поверхность (м²)				
Перепад высоты (м)	0-25	25-45	45-70		
0,0					
1,0	NOVA 180	NOVA 200			
2,0	NOVA 200 NOVA 300	FEKA 600			
3,0	NOVA 200				
4,0	NOVA 300				
5,0	FEKA 600	FEKA 600			
5,5	FENA 000	FENA 000			
6,0			NOVA 600		
7,0	NOVA 600	NOVA 600			
8,0					

Дождевая вода		Мокрая пов	ерхность (м²)	
Перепад высоты (м)	0 - 25	25 - 45	45 - 70	70 - 90
0,0				
0,5				
1,0				
1,5				
2,0			FEKA VS-VX	
2,5	FEKA VS-VX	FEKA VS-VX	550	2 x
3,0	550	550	330	FEKA VS-VX
3,5	330			550
4,0				
4,5				
5,0				
5,5	-			
6,0			FEKA VS-VX	
6,5	-	FEKA VS-VX	750	2 x
7,0	FEKA VS-VX	750		FEKA VS-VX
7,5	750			750
8,0			FEKA VS-VX	
8,5	-	FEKA VS-VX	1000	2 x
9,0	FEKA VS-VX	1000		FEKA VS-VX
9,5	1000			1000
10,0			FEKA VS-VX	
10,5	-	FEKA VS-VX	1200	
11,0	FEKA VS-VX	1200		2 x
11,5	1200			FEKA VS-VX
12,0	-			1200
12,5				

FEKABOX 110
FEKABOX / FEKAFOS 200
FEKABOX / FEKAFOS 280
FEKAFOS 280 DOUBLE
FEKAFOS 550

Сточные воды		ТИП ДОМА					
Перепад высоты (м)	Кухня или ванная	Кухня + ванная	Кухня+ 2 ванные	Кол-во домов			
0,0							
0,5							
1,0							
1,5							
2,0		FEKA VS - VX 550	FEKA VS - VX 550				
2,5							
3,0	FEKA VS 550						
3,5				1			
4,0							
4,5							
5,0			FEKA VS - VX 750				
5,5		FFWA WC NW 750	FERM V3 - VA /30				
6,0							
6,5	FEVA VC 750	FEKA VS - VX 750					
7,0	FEKA VS 750						

ПРИМЕЧАНИЯ

Максим.объём сточных вод в 1-семейном доме:

Кухня + ванная $= 7 \text{ м}^3/\text{ч}$

Кухня + 2 ванные $= 12 \text{ м}^3/\text{ч}$

Kyxня + 3 ванные = 16 м³/ч

- * Для выбора этих станций мы взяли трубопровод длиной 20 м. с тем же диаметром, что и у Feka
- ** Для установки FEKAFOS необходимо учитывать электрощиты, указанные в прилагаемых таблицах.
- ** При большей длине трубопровода просим обращаться в технический отдел DAB.

Площадь (м²)	0 - 25	25 - 45	45 - 70	70 - 90
Расход (м³/ч)	0 - 3	3 - 5,5	5,5 - 8,4	8,4 - 10,8

^{**} Для расчета насосов для дождевых вод берется среднее годовое количество осадков, равное 120 мм/ч

Объём емкости для сбора и хранения дождевой воды:

V (литров) = — 0,3 x Q (м³/ч) x 1000 Кол-во пусков / час

V = Объём емкости

Q= Расход м³/ч.

 N° пусков = 12

TIOLIDOP ABTOMATOMECKOOT CTANLAND DESTIPODIEM

	тип дома						
Перепад высоты (м)	Кухня + ванная	Кухня + 2 ванные	Кухня + :	3 ванные	Кол-во домов		
0,0							
0,5			2 x FEKA VS-VX 550	2 x FEKA VS-VX 550			
1,0		FEKA VS-VX 550	ELECTRICAL PANELS:	ELECTRICAL PANELS:			
1,5		ELECTRICAL PANELS:	E-BOX	E-BOX			
2,0	FEKA VS-VX 550	ED1,3M	+ 2 ANTIROTATION	+ 2 ANTIROTATION			
2,5	ELECTRICAL PANELS:	ED1,3T + ANTIROTATION	BASES	BASES			
3,0	ED1,3M ED1,3T	BASE					
3,5			2 x FEKA VS-VX 750	2 x FEKA VS-VX 750			
4,0			ELECTRICAL PANELS:	ELECTRICAL PANELS:			
4,5	-	FEKA VS-VX 750	E-BOX	E-BOX			
5,0	-	ELECTRICAL PANELS:	+ 2 ANTIROTATION	+ 2 ANTIROTATION			
5,5		ED1,3M	BASES	BASES			
6,0	FEKA VS-VX 750 ELECTRICAL PANELS:	ED1,3T + ANTIROTATION BASE		2 x	1		
6,5	ED1,3M		2 x FEKA VS-VX 1000	FEKA VS-VX 1000			
7,0	ED1,3T	FEKA VS-VX 1000 ELECTRICAL PANELS:	ELECTRICAL PANELS:	ELECTRICAL PANELS:			
7,5		ED1,3M	E-BOX + 2 ANTIROTATION BASES	E-BOX + 2 ANTIROTATION BASES			
8.0	FEKA VS-VX 1000 FLECTRICAL PANELS:	ED1,3T +					
8.5	ED1,3M	ANTIROTATION BASE	2 x	2 x			
9.0	ED1,3T	FEKA VS-VX 1200	FEKA VS-VX 1200	FEKA VS-VX 1200			
9,5		ELECTRICAL PANELS:	ELECTRICAL PANELS: E-BOX+ 2 ANTIROTATION BASES	ELECTRICAL PANELS:			
10,0	FEKA VS-VX 1200	ED1,3M	E-DUX+ 2 ANTIKUTATION DASES	E-DUA+ 2 ANTIRUTATION DASES			
10,5	ELECTRICAL PANELS:	ELECTRICAL PANELS: ED1,3T +	ED1,3T + ANTIROTATION BASE				
11,0	ED1,3M	ANTINOTATION DASE					
11,5	ED1,3T						
11,3							

FEKABOX 110
FEKABOX / FEKAFOS 200
FEKABOX / FEKAFOS 280
FEKAFOS 280 DOUBLE
FEKAFOS 550

ПРИМЕЧАНИЯ

 Для выбора насосной станции была принята в расчет труба слива длиной 20 м. и с таким же диаметром, что и у FEKA.

В таблице приведены стандартные параметры

 расчётов. Для уточнения проконсультируйтесь с тех. отделом DAB.

Попопап	тип дома					
Перепад высоты (м)	Кухня + ванная	Кухня + 2 ванные	Кухня + 3 ванные	Кол-во домов		
0,0						
0,5						
1,0	2 x		3			
1,5	FEKA VS-VX 750 ELECTRICAL PANELS:	2 x	2 x FEKA VS-VX 1200			
2,0	E-BOX	Z X FEKA VS-VX 1200	ELECTRICAL PANELS:			
2,5	+ 2 ANTIROTATION BASES	ELECTRICAL PANELS:	E-BOX			
3,0		E-BOX	+ 2 ANTIROTATION BASES			
3,5		+ 2 ANTIROTATION BASES	DAJEJ			
4,0	2 x	DAJEJ		2		
4,5	FEKA VS-VX 1000 ELECTRICAL PANELS:	FEKA VS-VX 1000				
5,0	E-BOX					
5,5	+ 2 ANTIROTATION BASES					
6,0	2 x					
6,5	FEKA VS-VX 1200					
7,0	ELECTRICAL PANELS: E-BOX					
7,5						
8,0	+ 2 ANTIROTATION BASES					

ПЕПРЕРОІВНАЯ ЦИРКУЛЯЦИЯ ВОДОІ

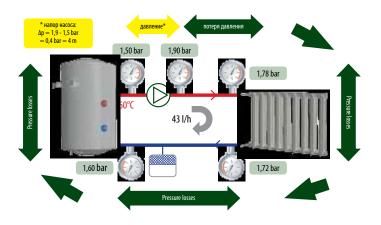
ЦИРКУЛЯЦИОННЫЕ НАСОСЫ С МОКРЫМ РОТОРОМ

Циркуляционные насосы для систем отопления и кондиционирования

ПАРАМЕТРЫ

- Расход от 1 до 78 м³/ч с макс. напором 18 м (в зависимости от модели).
- Диапазон рабочих температур -10°С до +110°С.
- Перекачиваемая жидкость должна быть чистой, не содержащей маслянистых веществ, химически нейтральной.
- Корпус двигателя из алюминия, литого под давлением.
- Рабочее колесо из технополимера.
- Резьбовые или фланцевые патрубки (в зависимости от модели) .
- 2 или 3 рабочих скорости работы (в зависимости от модели).

ПРИМЕНЕНИЕ



- Для солнечных систем (версия VSA).
- Циркуляция воды в системах отопления и кондиционирования.
- Доступна версия для рециркуляции санитарной воды (бронза VS).
- Для других применений (консультация специалиста).

ВАЖНО

- Клеммник никогда не монтировать под насосом.
- Во избежание выхода из строя механического уплотнения установка насоса только вертикально.
- Обязательна установка обратного клапана на 2-х патрубках.
- Содержание гликоля макс. 30% (60% для модели VSA)
- При наличии теплоизоляции нужна проверка, что слив конденсата из корпуса двигателя не закрыт.
- Циркуляционный насос не нуждается в тех.обслуживании.
- Можно дополнительно заказать патрубки и другие принадлежности в комплекте.

ПАРАМЕТРЫ ЛОКАЛЬНЫХ ПОТЕРЬ ДАВЛЕНИЯ ПРИ 80°С И СКОРОСТИ ПОТОКА 1 М/СЕК

Тип сопротивления	3/8" - 1/2"	3/4" - 1"	1 1/4" - 2"	> 2"
Фанкоил	1500			
Радиатор		14	19	
Котёл		14	19	
3-ходовой клапан	495	495	396	396
4-ходовой клапан	297	297	198	198
Угловой вентиль	198	198	149	-
Прямой вентиль	421	347	297	-
Обратный клапан	149	99	50	50
Кран-бабочка	173	99	74	50
Зауженный шаровой кран	10	10	5	5
Обычный шаровой кран	80	50	40	30
Обычная заслонка	10	10	5	5
Зауженная заслонка	60	50	40	30
Поворот	75	50	25	20
Поворот	99	75	40	25
Диффузор	50			
Конфузор	25			

Цифры даны в мм на 1 метр водяного столба.

подбое циркуляционного насоса

Требуется подобрать циркуляционный насос для стандартной системы отопления. Мощность котла 23 700 ккал/час, а потери давления в системе 4 м.в.с.

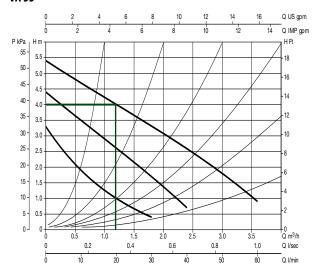
БЫСТРЫЙ ПОДБОР

ПОТЕРЯ	Мощность котла (ккал/час)				
ДАВЛЕНИЯ	7000-14000	15000-22000	23000-30000		
(M.B.C.)	Резьба	Резьба	Резьба		
1	VA 25	VA 25	VA 25		
2	VA 25	VA 25	VA 25		
3	VA 35	VA 55	VA 35		
4	VA 35	VA 55	VA 55		
5	VA 55	VA 65	A 50/180		
6	VA 65	A 56/180	A 56/180		
7	A 80/180	A 80/180	A 80/180		
8	A 80/180	A 80/180	A 80/180		

^{*} Насосы могуть быть в 1но-фазном и 3х-фазном исполнении

Данные:

- 1. Мощность котла = 23700 ккал/ч
- 2. Потери давления = 4 м.в.с.


Расход: (см.стр. 6)

$${f Q}$$
 (л/сек) = ${{\rm Moщ Hocts}\ {\rm kotna}\ ({\rm kkan/4})}\over {\Delta {
m t}^{\circ}\ {
m x}\ 3600}} = {{{\rm 23700}\ {
m kkan/4}}\over {20\ {
m x}\ 3600}} = 0,33$

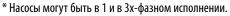
3 кривые на графике указывают параметры 3-х скоростей насоса. В нашем случае это скорость 3.

VA 55

^{*} Размеры насосов указаны в техническом каталоге

^{*} Для других применений получите консультацию у тех.специалистов DAB

подбое циркуляционного насоса



Требуется подобрать циркуляционный насос для первичного контура солнечной системы для горячей воды. Мы знаем что, площадь солнечных коллекторов 2м², а их общее кол-во равно 10. Потери давления 4 м.в.с.

БЫСТРЫЙ ПОДБОР

ПОТЕРИ ДАВЛЕНИЯ	Площадь коллекторов (м²)				
(M.B.C.)	4 - 8	10 - 20	20 - 24		
1					
1,5					
2					
2,5					
3					
3,5					
4					
4,5					

* Для других применений получите консультацию у тех.специалиста DAB.

ТЕОРЕТИЧЕСКИЙ ВЫБОР

Данные:

- 1. Кол-во коллекторов = 10
- 2. Площадь коллектора $= 2 \text{ м}^2$
- 3. Потери давления = 4 м.в.с.
- 4. Берем поток $60 \pi / muh$ на $1 m^2$

Расход: (см.стр 6)

Q (м³/ч) =
$$\frac{60 (\pi / 4.m^2) \times 2m^2 \times 10 \text{ коллекторов}}{1000}$$

ПЕПРЕРОІВНАЯ ЦИРКУЛЯЦИЯ ВОДОІ

ЭЛЕКТРОННЫЕ ЦИРКУЛЯЦИОННЫЕ НАСОСЫ

Циркуляционные насосы для систем отопления и кондиционирования.

EVOTRON

ПАРАМЕТРЫ

- Расход от 0.3 до 75.6м³\ч, и высота напора до 18м (в зависимости от модели)
- Рабочая температура -10°С to +110°С.
- Перекачиваемая жидкость должна быть чистой, не содержащей маслянистых веществ, химически нейтральной.
- Корпус двигателя из литого под давлением алюминия.
- Рабочее колесо из технополимера.
- Резьбовое или фланцевое соединение.
- Различные рабочие режимы, в зависимости от моделей.

ПРИМЕНЕНИЕ

- Использование в системах отопления и кондиционирования.
- Использование в системах с солнечными панелями (версия SOL)
- Версия для рециркуляции сан.воды (бронза SAN)
- Другие применения (требуется консультация тех.специалиста).

- Требуется установка обратных клапанов на подаче и обратке.
- Во избежание выхода из строя механического уплотнитнения, обязательна установка в вертикальном положении.
- Клеммник не должен распологаться под насосом.
- Содержание гликоля 30%.
- При наличии изоляции убедитесь, что дренажное отверстие для конденсата не закрыты или не забиты.
- Циркуляционный насос не требует обслуживания.
- Можно заказать доп.комплектующие (обратитесь в торгующую организацию).

подбое циркуляционного насоса

Требуется подобрать электронный циркуляционный насос для системы отопления. Известно, что мощность котла 16000 ккал/ч, и потери давления 4 м.в.с.

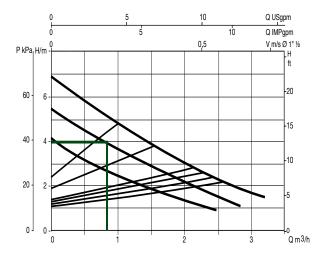
БЫСТРЫЙ ПОДБОР

ПОТЕРИ	Мощность котла (ккал/ч)				
ДАВЛЕНИЯ	7000-14000	15000-22000	23000-30000		
(M.B.C.)	Резьба	Резьба	Резьба		
1	EVOTRON 40/EVOSTA 40-70	EVOTRON 40/EVOSTA 40-70	EVOTRON 40/EVOSTA 40-70		
2	EVOTRON 40/EVOSTA 40-70	EVOTRON 40/EVOSTA 40-70	EVOTRON 40/EVOSTA 40-70		
3	EVOTRON 40/EVOSTA 40-70	EVOTRON 40/EVOSTA 40-70	EVOTRON 60/EVOSTA 40-70		
4	EVOTRON 60/EVOSTA 40-70	EVOTRON 60/EVOSTA 40-70	EVOTRON 60/EVOSTA 40-70		
5	EVOTRON 60/EVOSTA 40-70	EVOTRON 60/EVOSTA 40-70	EVOTRON 80		
6	EVOTRON 60/EVOSTA 40-70	EVOTRON 80	EVOTRON 80		
7	EVOTRON 80	EVOPLUS 80	EVOPLUS 80		
8	EVOTRON 80	EVOPLUS 110	EVOLPUS 110		

^{*} Для других применений получите консультацию в тех.отделе DAB.Department.

Данные:

- 1. Мощность котла = 16000 ккал/ч
- 2. Потери давления = 4 м.в.с.


Расход: (см.стр. 6)

$${f Q}$$
 (л/сек) = ${{\rm Moщ Hocts}\ {\rm kotna}\ ({\rm kkan/4})}\over {\Delta t^{\circ}\ x\ 3600}} = {{\rm 16000\ kkan/4}\over {20\ x\ 3600}} = 0,22$

В нашем случае решение на 2й скорости.

EVOSTA

подбое циркуляционного насоса

Требуется подобрать циркуляционный насос для первичного контура системы с солнечными панелями для горячего водоснабжения дома. Мы знаем, что площадь коллектора 2м², и их имеется 10 штук. Потери давления 4 м.в.с.

БЫСТРЫЙ ПОДБОР

ПОТЕРИ ДАВЛЕНИЯ	Площадь коллекторов (м²)		
(M.B.C.)	4 - 8	10 - 20	20 - 24
1			
1,5			
2			
2,5			
3			
3,5			
4			
4,5			

EVOTRON SOL 40
EVOTRON SOL 60

ТЕОРЕТИЧЕСКИЙ ВЫБОР

Данные:

- 1. Кол-во коллекторов = 10
- 2. Площадь коллектора= 2 м²
- 3. Потеря давления = 4 м. в. с.
- 4. Исходим из того, что поток на 1M^2 60 л/час.

Расход: (см.стр. 6)

Q (м³/ч) =
$$\frac{60 (л/ч.м²) x 2м² x 10 коллекторов}{1000}$$

^{*} Для других применения, получите консультацию у тех.специалиста DAB.

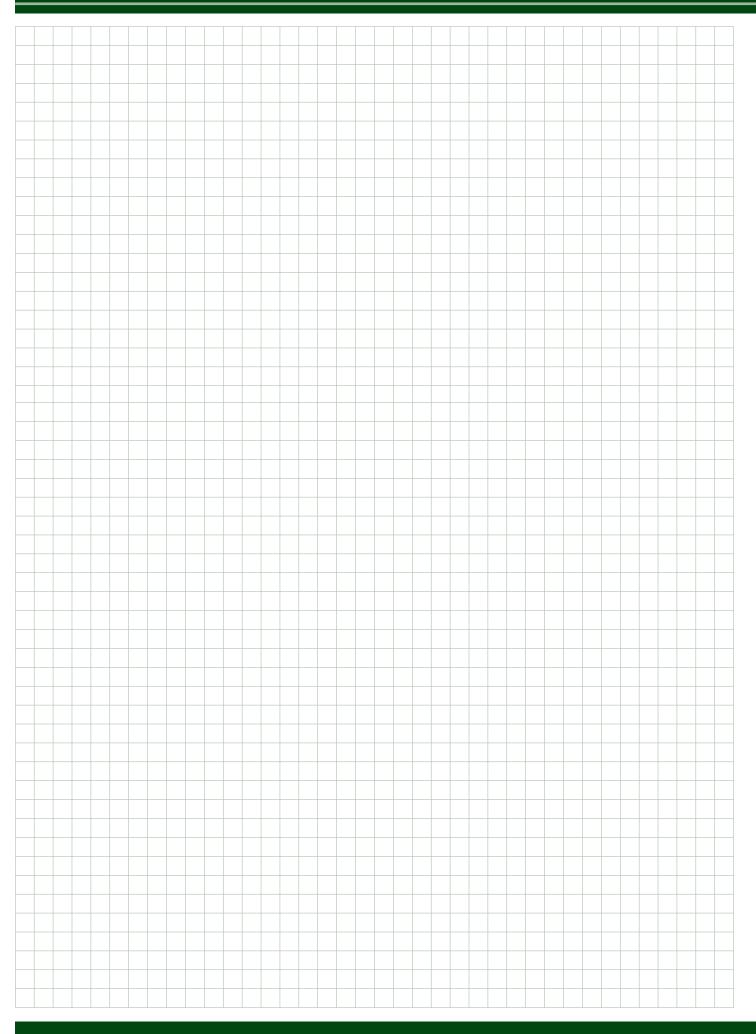
Центробежный насос для бассейна.

ПАРАМЕТРЫ

- Чрезвычайно тихий в работе (53-64 dB).
- Стойкие к коррозии материалы армированный технополимер, катафорезное покрытие металлических частей.
- Расход от 0.4 до 42 м³/ч и высота напора до 22м.
- Макс. рабочая температура +50°C.
- Встроенный гладкий фильтр для простоты обслуживания.

ПРИМЕНЕНИЕ

- Для домашних и коммерческих бассейнов.
- Для сельхоз.- и промышленного назначения.
- Для чистой и слегка загрязненной воды.
- Для использования с системами фильтрации бассейнов.


EUROSWIM (для частного применения)

РАЗМЕРЫ БАССЕЙНА (M)	ОБЪЁМ ВОДЫ (M³)	РАСХОД (M³/Ч)	модель
8 x 4	от 35 до 40	9	EUROSWIM 50 EUROSWIM 75
от 8 х 4 до 10 х 5	от 50 до 70	15	EUROSWIM 75 EUROSWIM 100
от 10 х 5 до 12 х 5	от 70 до 90	20	EUROSWIM 150
от 11 х 6 до 12 х 6	от 90 до 110	20	EUROSWIM 150 EUROSWIM 200

EUROSWIM (для коммерческого применения)

РАЗМЕРЫ БАССЕЙНА (M)	ОБЪЁМ ВОДЫ (M³)	РАСХОД (M³/Ч)	МОДЕЛЬ
8 x 4	от 35 до 40	14	EUROSWIM 100 EUROSWIM 150
от 8 x 4 до 10 x 5	от 50 до 70	24	EUROSWIM 150 EUROSWIM 200
от 10 х 5 до 12 х 5	от 70 до 90	30	EUROSWIM 200 EUROSWIM 300
от 11 х 6 до 12 х 6	от 90 до 110	40	EUROSWIM 300

Россия, 127247, г. Москва, Дмитровское ш., 100 стр. 3, Тел.: +7(495) 739-52-50, Факс: +7(495) 485-36-18

60164672 - 01/2014