Stainless steel bellows unit EKO Stainless steel flexible tube ES Technical Information · GB 11.3 Edition 11.08 ## Stainless steel bellows unit EKO - Fault-free machine operation due to absorption of thermal and pressure expansions - High bursting resistance due to multiple-layer bellows - Axial and lateral movement absorption ## Stainless steel flexible tube ES - Protection from material fatigue thanks to vibration absorption - Long service life due to use of stainless steel - Angular and lateral movement absorption - Compensation for installation tolerances due to optional lengths - Reduces structure-borne noise thus improving noise levels # Table of contents | idble of corneriis | | |---|------| | Stainless steel bellows unit EKO | . 1 | | Stainless steel flexible tube ES | . 1 | | Table of contents | . 2 | | 1 Application | . 3 | | 1.1 EKO | | | 1.2 ES | | | 1.3 Examples of application | . 6 | | 1.3.1 Gas and air supply to a drying kiln | 6 | | 1.3.3 Fuel pipes on a gas engine | | | 1.3.4 Gas pressure control and measurement system | | | 1.3.5 Gas and air supply to an aluminium smelting furnace 1.3.6 Pipes on a heating and solar system | | | 2 Certification | | | 3 Selection | | | 3.1 Stainless steel bellows unit with threaded connection | | | EKOR. | | | 3.1.1 Type code Stainless steel bellows unit with threaded | | | connection EKOR | . 10 | | 3.2 Stainless steel bellows unit with flanged connection EKOF | 11 | | 3.2.1 Type code Stainless steel bellows unit with threaded | | | connection EKOF | . 11 | | 3.3 Stainless steel flexible tube ES | 12 | | 3.3.1 Type code Stainless steel flexible tube ES | | | 4 Project planning information | | | 4.2 ES | | | 5 Accessories | | | 5.1 Flange seal WL-HT | | | 5.2 Restricting orifice | | | o nooniemig offico | | | 4 = 1 + 1 + 1 + 1 | _ | |--|----| | 6 Technical data | | | 6.1 Dimensions EKOR | 1 | | 6.2 Dimensions EKOF | 20 | | 6.3 Dimensions ES | 2 | | 6.4 Reduction factors EKO, ES | 2 | | 6.4.1 Dynamic reduction factor k_d | 2 | | 6.4.2 Temperature moderating factor k _t | 2 | | 7 Maintenance cycles | 23 | | 8 Glossary | 24 | | 8.1 Axial movement | | | 8.2 Angular movement | 24 | | 8.3 Lateral movement | | | 8.4 Relative movement | | | 8.5 Vibration amplitude | | | Feedback | 2. | | Contact | | | | | Stainless steel bellows units with threaded and flanged connections #### 1.1 EKO The stainless steel bellows unit EKO is designed for stressfree and safe pipe installation and to prevent transmission of vibration in gas, air and water installations. The stainless steel bellows unit EKO can compensate for thermal and pressure expansions in pipelines, disengage elastically-mounted units from the systems to which they are connected and compensate elastically for relative movements between system parts. This results in reduced forces and moments at the connections. The stainless steel bellows unit with its hot-galvanised flange permits the use of landfill gas. Stainless steel bellows units EKO can optionally be supplied with an integrated restricting orifice for adjusting the gas and air flow rate for gas burners. The stainless steel bellows unit EKO..R can withstand high temperatures. The EKO..F, EKO..FZ can withstand high temperatures (HTB) in conjunction with flange seals of type WL-HT. The HTB flange seals are available as accessories. Stainless steel flexible tubes with threaded and flanged connections #### 1.2 ES The stainless steel flexible tube ES is designed for stress-free and flexible connection of devices and pipes and to prevent transmission of vibration in gas, air and water installations. The stainless steel flexible tube ES can absorb vibrations with a high frequency and low amplitude, e.g. in fuel pipes, reduce structure-borne noise in pipelines, for example, compensate for inaccuracies in installation between units and serve as a flexible pipe element on presses, for example. It can be fitted in places where no fixed points can be located. The stainless steel flexible tube ES is optionally available in any length. Stainless steel flexible tubes in the supply lines of buildings Stainless steel flexible tubes on gas engine supply lines Stainless steel flexible tubes and bellows units at the kiln in the brickworks # 1.3 Examples of application #### 1.3.1 Gas and air supply to a drying kiln Pressure and temperature factors from the burner influence the gas and air supply. The stainless steel flexible tube and bellows unit compensate for the pressure and thermal expansion in the pipelines. They ensure that the process is runs without any problem. #### 1.3.2 Exhaust gas system on a compressor Two stainless steel flexible tubes mounted at right angles in the exhaust gas pipe reduce vibrations on all sides which the unit causes on the connected pipe. ## 1.3.3 Fuel pipes on a gas engine When a gas engine is connected to the fuel pipes, installation tolerances can occur at the connection points. The simple way to compensate for these is with stainless steel flexible tubes. ## 1.3.4 Gas pressure control and measurement system The stainless steel flexible tube offers an effective and costefficient solution for protecting gas lines, on thermal flue air purification systems for instance, against thermal expansion. It reduces structure-borne noise in the pipeline. # 1.3.5 Gas and air supply to an aluminium smelting furnace Pressure and temperature factors influence the gas and air supply. The stainless steel bellows units compensate for the pressure and thermal expansion in the pipelines. Stainless steel bellows units EKO..10P are specially designed to suit the Kromschröder ZIO burner for a high burner output at low operating pressure. ## 1.3.6 Pipes on a heating and solar system The pipes between the collector, boiler and storage tank are adapted to the building architecture. Stainless steel flexible tubes are used to compensate favourably for inaccuracies in installation. # 2 Certification **(**E – DIN-DVGW tested and registered. | Туре | DVGW test mark | Test based on | |------------------|----------------|---------------| | EKORI, EKORA | NG-4504AS3148 | DIN 30681 | | EKOF100P, EKOF-Z | NG-4504AR3924 | DIN 30681 | | ES | NG-4601AR0759 | DIN 3384 | For all gases according to DVGW Code of Practice G 260 Air and Water. ## 3 Selection ## 3.1 Stainless steel bellows unit with threaded connection EKO..R | | RI | RA | |--------|----|----| | EKO 15 | • | • | | EKO 20 | • | • | | EKO 25 | • | • | | EKO 32 | • | • | | EKO 40 | • | • | | EKO 50 | • | • | ## Order example EKO 25RA ## 3.1.1 Type code Stainless steel bellows unit with threaded connection EKO..R | Code | Description | |------------------------|------------------------------| | EKO | Stainless steel bellows unit | | 15, 20, 25, 32, 40, 50 | nominal diameter | | RI | Rp internal thread | | RA | R external thread | Overall length – see Technical data. Selection 11 # 3.2 Stainless steel bellows unit with flanged connection EKO..F | | F | 10P | 100P | -Z | |---------|---|-----|------|----| | EKO 25 | • | | | • | | EKO 32 | • | | | • | | EKO 40 | • | | | • | | EKO 50 | • | | | • | | EKO 65 | • | | | • | | EKO 80 | • | | | • | | EKO 100 | • | | | • | | EKO 125 | • | | | • | | EKO 150 | • | | | • | | EKO 200 | • | | • | • | | EKO 250 | • | • | | | | EKO 350 | • | • | | | ## Order example ## EKO 200F100P ## 3.2.1 Type code Stainless steel bellows unit with threaded connection EKO..F | Code | Description | |--|--| | EKO | Stainless steel bellows unit | | 25, 32, 40, 50, 65, 80, 100, 125, 150, 200, 250, 350 | nominal diameter | | F | Flange with hole pattern according to PN 10, p _e max. 10 bar | | 10P | Flange with hole pattern according to PN 16, p _e max. 1 bar | | 100P | Flange with hole pattern according to PN 16,
p _e max. 16 bar | | -Z | Hot-galvanised | Overall length – see Technical data. Selection 12 ## 3.3 Stainless steel flexible tube ES | | RA | F | 500 | 800 | 1000 | |--------|----|---|-----|-----|------| | ES 8 | • | | • | • | • | | ES 10 | • | | • | • | • | | ES 16 | • | | • | • | • | | ES 20 | • | | • | • | • | | ES 25 | • | | • | • | • | | ES 32 | • | | • | • | • | | ES 40 | • | | • | • | • | | ES 50 | • | | • | • | • | | ES 65 | | • | • | • | • | | ES 80 | | • | • | • | • | | ES 100 | | • | • | • | • | ## Order example # ES 32RA800 # 3.3.1 Type code Stainless steel flexible tube ES | Code | Description | |--|-------------------------------| | ES | Stainless steel flexible tube | | 8, 10, 16, 20, 25, 32, 40, 50, 65, 80, 100 | nominal diameter | | RA | R external thread | | F | Flange to EN 1092-1 | | 500, 800, 1000 | Length [mm]* | ^{*} Other lengths on request # 4 Project planning information If the stainless steel bellows unit EKO or the stainless steel flexible tube ES are used with external aggressive media acting on them, we recommend using additional protection, e.g. a heat shrink tube. #### 4 1 FKO Only install one stainless steel bellows unit between two fixed points or guide bearings. Distance between the bellows unit and the fixed point **FP** or guide bearing $\mathbf{FL} \leq 3$ DN Provide fixed points at the ends of pipe sections, which can absorb the axial compression force, the adjustment force of the bellows unit and the friction force of the guide bearings. Dynamic stressd $\mathbf{A} = \text{angular}, \mathbf{L} = \text{lateral-see}$ Technical data, Dimensions EKO..R oder Dimensions EKO..F. Vibration absorption: Install the bellows unit as close to the vibrating unit as possible to avoid additional movements. Attach the pipeline immediately downstream of the bellows unit, independent of the vibrating unit, using a guide bearing **FL** or a fixed point **FP**. In the event of vibrations in all directions, install a second bellows unit at a right angle to the first one. Ensure a sufficiently good stand for the vibrating unit in order to absorb the axial compression force. Maximum vibration amplitude \leq 5 to 10 % of the movement absorption – see Technical Data, Dimensions EKO..R or Dimensions EKO..F. Determine the initial stress for the expansion or compression to be expected: $$V = D \times \left(0.5 - \frac{t_E - t_{min}}{t_{max} - t_{min}}\right)$$ = Initial stress [mm]. = Expansion of pipeline [mm], = Installation temperature [°C], $t_{min} = Min.$ operating temperature [°C], t_{max} = Max. operating temperature [°C]. Positive initial stress = expand bellows unit, negative initial stress = compress bellows unit. Define the installation space on the basis of the overall length of the bellows unit- $$L_E = B_L \pm V$$ L_F = Installation space $B_1 = Overall length$ V = Initial stress. When a restricting orifice is used – see Accessories – the overall length is increased by 3 mm. #### EKO..F High temperature bearing in conjunction with WL-HT type flange seal – see Accessories. #### 4.2 ES Avoid torsion load on the stainless steel flexible tube. For expansion and vibration absorption, attach the pipeline directly downstream of the stainless steel flexible tube using a fixed point **FP**. Note the minimum bending radius for one-off or frequent movement – see dimensions ES. Impermissible bending immediately downstream of the connection element can be avoided by using rigid pipe bends. Always install the stainless steel flexible tube at right angles to the direction of movement. Note distance to the wall or floor. In the event of vibrations in all directions, install a second stainless steel flexible tube at a right angle to the first one. ## 5 Accessories WL-HT # 5.1 Flange seal WL-HT EKO..F, EKO..FZ can only withstand high temperatures conjunction with WL-HT type flange seal for the inlet and outlet | Flange seal | Order no. | |--------------|-----------| | WL-HT DN 25 | 03352221 | | WL-HT DN 32 | 03352222 | | WL-HT DN 40 | 03352223 | | WL-HT DN 50 | 03352224 | | WL-HT DN 65 | 03352225 | | WL-HT DN 80 | 03352226 | | WL-HT DN 100 | 03352227 | | WL-HT DN 125 | 03352228 | | WL-HT DN 150 | 03352229 | | WL-HT DN 200 | 03352220 | ## 5.2 Restricting orifice Restricting orifices made of V2A steel can be supplied for stainless steel bellows units EKO if required. Please ask us for a quotation. Media: natural gas, LPG (gaseous), air and water; other gases on request. #### **EKO** The pressure loss at the EKO is approximately twice as high as that of a smooth pipe of the same length. Stainless steel bellows 1.4571. #### EKO..R Clamping rings made of stainless steel 1.4301, fittings made of galvanised malleable cast iron REINZ-AFM 34 seal to DIN 3535-6, flat-sealing, resistant to high temperatures (HTB). Operating temperature: Air: -20 to +250°C, Gas: -20 to +250°C, Water: 0 to +100°C. Short-term temperature peaks of up to 300°C are admissible. Max. inlet pressure pe: Air and water: 10 bar, Gas: 5 bar. Observe the maximum allowable inlet pressure for dynamic stress and increased temperature – see Reduction factors. #### EKO..F Bellows and flange made of stainless steel: 1.4571 up to DN 100, 1.4541 > DN 100. Operating temperature: Air: -20 to +500°C, Gas: -20 to +150°C, Water: 0 to +100 °C. Short-term temperature peaks of up to 300°C are admissible. Max. inlet pressure pe: 10 bar, EKO 250F10P, EKO 350F10P: 1 bar. Observe the maximum allowable inlet pressure for dynamic stress and increased temperature – see Reduction factors. EKO..F cold-galvanised, EKO..FZ hot-galvanised. High temperature bearing only in conjunction with WL-HT type flange seals Type WL-HT—see Accessories. #### ES The pressure loss is approximately twice as high as that of a smooth pipe of the same length. When installed in a 90° bend, it increases at maximum by a factor of 2 Material: stainless steel corrugated tube made of 1.4541, stainless steel sheathing made of 1.4301. #### ES..RA Connection sleeves DN 8 to DN 25 on both sides, made of machining steel 1.0718, from DN 32 made of steel 1.0037. #### Connection: 1 x external thread, conically sealing, 1 x hexagon nipple and external thread to EN 10226-1. Fittings hard-soldered with silver solder up to DN 25, welded from DN 32. Loose screw attachment parts made of galvanised malleable cast iron or cast steel. Permissible operating temperature: Air, Gas and Water: -10 to +300°C. Max. inlet pressure pe: Air and Water: 16 bar, Gas: 4 bar. Observe the maximum allowable inlet pressure for dynamic stress and increased temperature – see Reduction factors. #### FS F Welding flange made of stainless steel 1.4541, (loose flange made of steel, galvanised, PN 16 to DIN FN 1092-1) Max. inlet pressure p_e : Air. Gas and Water: 16 bar. Observe the maximum allowable inlet pressure for dynamic stress and increased temperature – see Reduction factors. # 6.1 Dimensions EKO..R | _ | Conn | ection | Conn
A | | Number of screws Movement absorption | | | Movement absorption | | | |----------|------|---------|-----------|----|--------------------------------------|----------------|-----------|---------------------|------|------| | Туре | | | [mm] | | | | ± [mm] | | [mm] | [kg] | | | DN | | Ü* | E* | n | Δ axial | ∆ angular | Δ lateral | | | | EKO 15RA | 15 | R 1/2 | 41 | 26 | - | 12 | 50 | 8 | 157 | 0.41 | | EKO 20RA | 20 | R 3/4 | 50 | 32 | - | 14 | 45 | 7 | 173 | 0.68 | | EKO 25RA | 25 | R 1 | 55 | 38 | - | 15 | 40 | 8 | 194 | 0.91 | | EKO 32RA | 32 | R 11/4 | 67 | 48 | - | 15 | 35 | 8 | 215 | 1.27 | | EKO 40RA | 40 | R 11/2 | 75 | 54 | _ | 17 | 35 | 9 | 240 | 1.71 | | EKO 50RA | 50 | R 2 | 90 | 66 | _ | 21 | 30 | 10 | 270 | 2.46 | | EKO 15RI | 15 | Rp ⅓ | 41 | 26 | _ | 12 | 50 | 8 | 125 | 0.39 | | EKO 20RI | 20 | Rp ¾ | 50 | 32 | - | 14 | 45 | 7 | 135 | 0.66 | | EKO 25RI | 25 | Rp 1 | 55 | 38 | _ | 15 | 40 | 8 | 150 | 0.72 | | EKO 32RI | 32 | Rp 11/4 | 67 | 48 | - | 15 | 35 | 8 | 165 | 1.00 | | EKO 40RI | 40 | Rp 1⅓ | 75 | 54 | _ | 17 | 35 | 9 | 190 | 1.40 | | EKO 50RI | 50 | Rp 2 | 90 | 66 | _ | 21 | 30 | 10 | 210 | 2.05 | \ddot{U}^* = union nut, E^* = insert. # 6.2 Dimensions EKO..F FKO F | | EKU. F | | | | | | | | | | |--------------|--------|--------------|------|------------------|---------------------|------------------|------------------|----------------------------|--------|--| | | Conr | Connection | | Number of screws | Movement absorption | | | Overall length
(± 2 mm) | Weight | | | Туре | | | [mm] | | | ± [mm] | | [mm] | [kg] | | | | DN | Hole pattern | K | n | Δ axial | Δ angular | Δ lateral | | | | | EKO 25 | 25 | PN 16 | 85 | 4 | 7 | 18 | 1.5 | 60 | 2.30 | | | EKO 32F | 32 | PN 16 | 100 | 4 | 8 | 17 | 2 | 65 | 3.42 | | | EKO 40F (Z) | 40 | PN 16 | 110 | 4 | 12 | 18 | 2 | 75 | 3.95 | | | EKO 50F (Z) | 50 | PN 16 | 125 | 4 | 12 | 18 | 2.5 | 95 | 4.80 | | | EKO 65F (Z) | 65 | PN 16 | 145 | 4 | 17 | 18 | 3.5 | 110 | 5.90 | | | EKO 80F (Z) | 80 | PN 16 | 160 | 8 | 20 | 18 | 3.5 | 125 | 7.20 | | | EKO 100F (Z) | 100 | PN 16 | 180 | 8 | 20 | 16 | 4.5 | 150 | 7.82 | | | EKO 125F (Z) | 125 | PN 16 | 210 | 8 | 22.5 | 14 | 4.1 | 175 | 11.30 | | | EKO 150F (Z) | 150 | PN 16 | 240 | 8 | 28 | 16.5 | 7 | 200 | 13.00 | | | EKO 200F (Z) | 200 | PN 10 | 295 | 8 | 40 | 16 | 7.5 | 240 | 17.30 | | | EKO 200F100P | 200 | PN 16 | 295 | 12 | 40 | 16 | 7.5 | 240 | 16.70 | | | EKO 250F10P | 250 | PN 16 | 355 | 12 | 36 | 13 | 4.2 | 190 | 17.7 | | | EKO 350F10P | 350 | PN 16 | 470 | 16 | 30 | 9 | 2 | 168 | 28.7 | | # 6.3 Dimensions ES | DN N* E* Ü* S* K mm Di mm One-off bending Frequent bending Kg | ht | |---|----| | ES 10RA 10 R 3/8 19 16 32 22 10.2 15.7 38 130 0.40 | | | | | | | | | ES 16RA 16 R ½ 22 19 41 26 - - 16.2 23.3 58 160 0.63 | | | ES 20RA 20 R 34 27 26 50 32 - - 20.2 28.3 70 170 0.92 | | | ES 25RA 25 R 1 36 32 55 38 - - 25.5 34.2 85 190 1.34 | | | ES 32RA 32 R 11/4 46 46 67 48 - - 34.2 43.0 105 260 1.87 | | | ES 40RA 40 R 1½ 50 55 75 54 - - 40.1 52.0 130 300 2.37 | | | ES 50RA 50 R 2 60 65 90 66 - - 50.4 62.6 160 320 3.4 | | | ES 65F 65 DN 65 - - - 145 4 65.3 81.2 200 460 8.24 | | | ES 80F 80 DN 80 - - - 160 8 80.2 98.0 240 660 10.5 | | | ES 100F 100 DN 100 - - - 180 8 100.0 119.4 290 750 11.75 | | # 6.4 Reduction factors EKO, ES Pressure pulsation, pressure surges, pressure fluctuations, frequent movements, vibrations and high temperatures reduce the max. permissible inlet pressure. To calculate the permissible inlet pressure: $p_e = p_{max} \times k_d \times k_t$ = permissible inlet pressure [bar] $p_{max} = max$. inlet pressure [bar] k_d = dynamic reduction factor k_t = temperature reduction factor 6.4.1 Dynamic reduction factor k_d | | Slight, slow movement;
no vibration | Frequent, uniform movement; vibrations | Rhythmic and surge-
type movement;
strong vibrations | |-------------------------------------|--|--|--| | Stationary or slow and uniform flow | 1 | 0.80 | 0.40 | | Pulsating and non-uniform flow | 0.80 | 0.63 | 0.32 | | Rhythmic and surge-type flow | 0.32 | 0.20 | On request | 6.4.2 Temperature moderating factor k_t | o. 1.2 temperatore moderating racion k | I | | |--|------------------------------------|----------------------------------| | Temperature °C | EKO/ES from DN 125 material 1.4541 | EKO up to DN 100 material 1.4571 | | 20 | 1.00 | 1.00 | | 50 | 0,93 | 0,92 | | 100 | 0,83 | 0,80 | | 150 | 0,78 | 0,76 | | 200 | 0,74 | 0,72 | | 250 | 0,70 | 0,68 | | 300 | 0,66 | 0,64 | | 350 | 0,64 | 0,62 | | 400 | 0,62 | 0,60 | | 450 | 0,60 | 0,59 | | 500 | 0,59 | 0,58 | | 550 | 0,58 | 0,58 | | | | | # 7 Maintenance cycles The stainless steel bellows unit EKO and the stainless steel flexible tube ES require little servicing. # 8 Glossary ## 8.1 Axial movement The movement of the stainless steel bellows unit or stainless steel flexible tube is absorbed in the axial direction. ## 8.2 Angular movement The movement absorption of the stainless steel bellows unit or stainless steel flexible tube takes place at a certain angle. #### 8.3 Lateral movement The movement of the stainless steel bellows unit or stainless steel flexible tube is absorbed laterally. #### 8.4 Relative movement The relative movement is the movement of one body in relation to another ## 8.5 Vibration amplitude The vibration amplitude is the largest excursion of a vibration from the compressed to the extended bellows unit. #### Feedback Finally, we are offering you the opportunity to assess this "Technical Information (TI)" and to give us your opinion, so that we can improve our documents further and suit them to your needs. | Clarity | Comprehension | Scope | |--|--|--| | Found information quickly | Coherent | ○ Too little | | Searched for a long time | Too complicated | Sufficient | | Didn't find information | O No answer | ○ Too wide | | What is missing? fghmgmghhm | | O No answer | | O No answer | | | | Use | Navigation | My scope of functions | | \square To get to know the product | I can find my way around | Technical department | | ☐ To choose a product | O I got "lost" | Sales | | ✓ Planning | O No answer | No answer | | \square To look for information | | | | Remarks | | | | 345634636346346 | | The state of s | | | | (Adohe Reader 7 or higher required) | ## Contact Elster Kromschröder GmbH Postfach 2809 · 49018 Osnabrück Strotheweg 1 · 49504 Lotte (Büren) Germany T +49 541 1214-0 F +49 541 1214-370 info@kromschroeder.com www.kromschroeder.com The current addresses of our international agents are available on the Internet: www.kromschroeder.com → Sales Kromschröder, a product brand of the Elster Group **krom//schröder** We reserve the right to make technical modifications in the interests of progress. Copyright © 2007 Elster Group All rights reserved. 03250599